मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: Find the domain of the following function. f(x) = x-3+1log(5-x) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`

बेरीज

उत्तर

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`

For f to be defined,

x – 3 ≥ 0, 5 – x > 0 and 5 – x ≠ 1

∴ x ≥ 3, x < 5 and x ≠ 4

∴ Domian = [3, 4) ∪ (4, 5)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 6 Functions
Miscellaneous Exercise 6.2 | Q II. (40) (b) | पृष्ठ १३२

संबंधित प्रश्‍न

The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Express the following exponential equation in logarithmic form

e–x = 6


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Select the correct answer from given alternatives.

Find x, if 2log2 x = 4


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Answer the following:

A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 5


Answer the following:

Let f : R → R be given by f(x) = x + 5 for all x ∈ R. Draw its graph


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


Given the function f: x → x2 – 5x + 6, evaluate f(2)


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Check if this relation is a function


If the domain of function f(a) = a2 - 4a + 8 is (-∞, ∞), then the range of function is ______


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Find the range of the following functions given by `|x - 4|/(x - 4)`


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


Find the domain of the following functions given by f(x) = x|x|


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f – g)(x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×