मराठी

Let F : R → R Be Defined by F(X) = 2x + |X|. Then F(2x) + F(−X) − F(X) = (A) 2x (B) 2|X| (C) −2x (D) −2|X| - Mathematics

Advertisements
Advertisements

प्रश्न

Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =

पर्याय

  • (a) 2x

  • (b) 2|x|

  • (c) −2x

  • (d) −2|x|

     
MCQ

उत्तर

(b) 2|x|

f(x) = 2x + |x|
Then, f(2x) + f(−x) − f(x)

\[= 2\left( 2x \right) + 2\left| x \right| + \left( - 2x \right) + \left| - x \right| - 2x + \left| x \right|\]
\[ = 4x - 2x - 2x + 2\left| x \right| + \left| - x \right| - \left| x \right|\]
\[ = 0 + 2\left| x \right| + \left| x \right| - \left| x \right|\]
\[ = 2\left| x \right|\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 15 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


If f(x) = 3x + a and f(1) = 7 find a and f(4).


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Express the following logarithmic equation in exponential form

log2 64 = 6


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


Solve for x.

log2 x + log4 x + log16 x = `21/4`


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Answer the following:

A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Find the domain of the following function.

f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`


Answer the following:

Find the domain of the following function.

f(x) = x!


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Find the domain of the following function.

f(x) = [x] + x


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


Range of f(x) = `1/(1 - 2 cosx)` is ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×