मराठी

Let F(X) = X, G ( X ) = 1 X and H(X) = F(X) G(X). Then, H(X) = 1(a) x ∈ R (b) x ∈ Q (c) x ∈ R − Q (d) x ∈ R, x ≠ 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1

पर्याय

  • (a) x ∈ R

  • (b) x ∈ Q

  • (c) x ∈ R − Q

  • (d) x ∈ R, x ≠ 0

     
MCQ

उत्तर

(d) x ∈ R, x ≠ 0

Given:
f(x) = x,  \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x) Now,
\[h(x) = x \times \frac{1}{x} = 1\] We observe that the domain of f is \[\mathbb{R}\] and the domain of g is  \[\mathbb{R} - \left\{ 0 \right\}\] ∴ Domain of h = Domain of f ⋂ Domain of g = \[\mathbb{R} \cap \left[ \mathbb{R} - \left\{ 0 \right\} \right] = \mathbb{R} - \left\{ 0 \right\}\]
\[\Rightarrow\] x ∈ R, x ≠ 0
 
 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 19 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(a) range of f, i.e. f(A).


A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\]  x ∈ R, then

 

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find `f(1/2)`


Check if the following relation is a function.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Express the following logarithmic equation in exponential form

ln e = 1


Solve for x.

log2 + log(x + 3) – log(3x – 5) = log3


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Show that, `log ("a"^2/"bc") + log ("b"^2/"ca") + log ("c"^2/"ab")` = 0


Answer the following:

Find the domain of the following function.

f(x) = 5–xPx–1


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = `x/(x + 1)`, g(x) = `x/(1 - x)`


The domain of the function f(x) = log3+x (x2 - 1) is ______.


Let f : R → R be defined by 

f(x) = `{(3x;    x > 2),(2x^2;    1 ≤ x ≤ 2), (4x;   x < 1):}`

Then f(-2) + f(1) + f(3) is ______ 


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Find the range of the following functions given by f(x) = 1 + 3 cos2x

(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The period of the function

f(x) = `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` is ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×