Advertisements
Advertisements
प्रश्न
The domain of definition of \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is
पर्याय
(a) [4, ∞)
(b) (−∞, 4]
(c) (4, ∞)
(d) (−∞, 4)
उत्तर
(a) [4, ∞) \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\]
\[\text{ For f(x) to be defined } , x - 4 \geq 0\]
\[ \Rightarrow x - 4 \geq 0\]
\[ \Rightarrow x \geq 4 . . . . (1)\]
\[\text{ Also} , x - 3 - 2\sqrt{x - 4} \geq 0\]
\[ \Rightarrow x - 3 - 2\sqrt{x - 4} \geq 0\]
\[ \Rightarrow x - 3 \geq 2\sqrt{x - 4}\]
\[ \Rightarrow (x - 3 )^2 \geq \left( 2\sqrt{x - 4} \right)^2 \]
\[ \Rightarrow x^2 + 9 - 6x \geq 4\left( x - 4 \right)\]
\[ \Rightarrow x^2 - 10x + 25 \geq 0\]
\[ \Rightarrow (x - 5) {}^2 \geq 0, \text{ which is always true .} \]
\[\text{ Similarly,} x - 3 + 2\sqrt{x - 4} \geq 0 \text{ is always true } . \]
\[\text{ Thus, dom } (f(x)) = [4, \infty )\]
APPEARS IN
संबंधित प्रश्न
Find the domain of the function f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`
Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.
Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:
(b) pre-images of 6, −3 and 5.
f, g, h are three function defined from R to R as follow:
(i) f(x) = x2
Find the range of function.
If \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).
If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]
for all x ∈ R − {0}, then write the expression for f(x).
If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]
If f, g, h are real functions given by f(x) = x2, g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .
Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.
Let f and g be two real functions given by
f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}
Find the domain of fg.
If f(x) = cos (log x), then the value of f(x2) f(y2) −
If f : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for } - 2 \leq x \leq 0 \\ x - 1, & \text{ for } 0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =
f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,
If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\] for all non-zero x, then f(x) =
The domain of definition of \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is
Let \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?
Check if the following relation is function:
If f(x) = 3x + a and f(1) = 7 find a and f(4).
Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.
{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}
If f(m) = m2 − 3m + 1, find f(− x)
Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2
Write the following expression as a single logarithm.
ln (x + 2) + ln (x − 2) − 3 ln (x + 5)
Prove that logbm a = `1/"m" log_"b""a"`
Answer the following:
Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0
Answer the following:
Simplify, log (log x4) – log (log x)
Answer the following:
Without using log tables, prove that `2/5 < log_10 3 < 1/2`
Given the function f: x → x2 – 5x + 6, evaluate f(– 1)
A graph representing the function f(x) is given in it is clear that f(9) = 2
Describe the following Range
A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2
The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.
Length ‘x’ of forehand (in cm) |
Height 'y' (in inches) |
35 | 56 |
45 | 65 |
50 | 69.5 |
55 | 74 |
Find a and b
If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0
If f(x) = 5x - 3, then f-1(x) is ______
The domain of the real valued function f(x) = `sqrt((x - 2)/(3 - x))` is ______.
Find the domain of the following function given by:
f(x) = `(3x)/(2x - 8)`
Find the range of the following functions given by f(x) = 1 – |x – 2|
Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3
The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.
The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval
The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.
If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.