मराठी

The Domain of Definition of F ( X ) = √ X − 3 − 2 √ X − 4 − √ X − 3 + 2 √ X − 4 is (A) [4, ∞) (B) (−∞, 4] (C) (4, ∞) (D) (−∞, 4) - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 

पर्याय

  • (a) [4, ∞)

  • (b) (−∞, 4]

  • (c) (4, ∞)

  • (d) (−∞, 4)

     
MCQ

उत्तर

(a) [4, ∞)  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\]

\[\text{ For f(x) to be defined } , x - 4 \geq 0\]

\[ \Rightarrow x - 4 \geq 0\]

\[ \Rightarrow x \geq 4 . . . . (1)\]

\[\text{ Also} , x - 3 - 2\sqrt{x - 4} \geq 0\]

\[ \Rightarrow x - 3 - 2\sqrt{x - 4} \geq 0\]

\[ \Rightarrow x - 3 \geq 2\sqrt{x - 4}\]

\[ \Rightarrow (x - 3 )^2 \geq \left( 2\sqrt{x - 4} \right)^2 \]

\[ \Rightarrow x^2 + 9 - 6x \geq 4\left( x - 4 \right)\]

\[ \Rightarrow x^2 - 10x + 25 \geq 0\]

\[ \Rightarrow (x - 5) {}^2 \geq 0, \text{ which is always true .}  \]

\[\text{ Similarly,}  x - 3 + 2\sqrt{x - 4} \geq 0 \text{ is always true } . \]

\[\text{ Thus, dom } (f(x)) = [4, \infty )\]

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 38 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.


Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

fgh are three function defined from R to R as follow:

(i) f(x) = x2

Find the range of function.

 

If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


Check if the following relation is function:


If f(x) = 3x + a and f(1) = 7 find a and f(4).


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


If f(m) = m2 − 3m + 1, find f(− x)


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


Prove that logbm a = `1/"m" log_"b""a"`


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Simplify, log (log x4) – log (log x)


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Given the function f: x → x2 – 5x + 6, evaluate f(– 1)


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


If f(x) = 5x - 3, then f-1(x) is ______ 


The domain of the real valued function f(x) = `sqrt((x - 2)/(3 - x))` is ______.


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


Find the range of the following functions given by f(x) = 1 – |x – 2| 


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.


If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×