मराठी

Write the Range of the Function F(X) = Cos [X], Where − π 2 < X < π 2 . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

उत्तर

Since f(x) = cos [x], where

\[\frac{- \pi}{2} < x < \frac{\pi}{2}\] ,
\[- \frac{\pi}{2} < x < \frac{\pi}{2}\]
\[ \Rightarrow - 1 . 57 < x < 1 . 57\]
\[ \Rightarrow [x] \in { - 1, 0, 1, 2}\]
\[\text{ Thus } , \cos [x] = {\cos ( - 1), \cos 0, \cos1, \cos 2 } . \]
\[\text{ Range of }  f(x) = {\cos 1, 1, \cos 2} .\]
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.5 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.5 | Q 5 | पृष्ठ ४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f(x) = x2, find `(f(1.1) - f(1))/((1.1 - 1))`


Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 


If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


The range of f(x) = cos [x], for π/2 < x < π/2 is


Which of the following are functions?


The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\]  x ∈ R, then

 

Check if the relation given by the equation represents y as function of x:

x2 − y = 25


Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Express the area A of circle as a function of its radius r


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Express the following logarithmic equation in exponential form

log2 64 = 6


Write the following expression as sum or difference of logarithm

In `(("a"^3 ("a" - 2)^2)/sqrt("b"^2 + 5))`


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

Find the domain of the following function.

f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`


Answer the following:

Find the domain of the following function.

f(x) = x!


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


If f(x) = 5x - 3, then f-1(x) is ______ 


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The range of the function f(x) = x2 + 2x+ 2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×