मराठी

Which of the Following Are Functions? (A) {(X, Y) : Y2 = X, X, Y ∈ R} (B) {(X, Y) : Y = |X|, X, Y ∈ R} (C) {(X, Y) : X2 + Y2 = 1, X, Y ∈ R} (D) {(X, Y) : X2 − Y2 = 1, X, Y ∈ R} - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following are functions?

पर्याय

  • (a) {(xy) : y2 = xxy ∈ R}

  • (b) {(xy) : y = |x|, xy ∈ R}

  • (c) {(xy) : x2 + y2 = 1, xy ∈ R}

  • (d) {(xy) : x2 − y2 = 1, xy ∈ R}

     
MCQ

उत्तर

(b) {(xy) : y = |x|, xy ∈ R}

For every value of ∈ R, there is a unique value y∈ R.
i.e. there is a unique image for all values of ∈ R.
Also, values of x occur only once in the ordered pairs.
Thus, it is a function.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 8 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f(x) = x2, find `(f(1.1) - f(1))/((1.1 - 1))`


Define a function as a correspondence between two sets.

 

What is the fundamental difference between a relation and a function? Is every relation a function?


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


Check if the relation given by the equation represents y as function of x:

2x + 3y = 12


Check if the relation given by the equation represents y as function of x:

x + y2 = 9


Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Answer the following:

If f(x) = 3x4 – 5x2 + 7 find f(x – 1)


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Let f = {(x, y) | x, y ∈ N and y = 2x} be a relation on N. Find the domain, co-domain and range. Is this relation a function?


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×