English

The Range of the Function F ( X ) = X 2 − X X 2 + 2 X Is(A) R (B) R − {1} (C) R − {−1/2, 1} (D) None of These - Mathematics

Advertisements
Advertisements

Question

The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

Options

  • (a) R

  • (b) R − {1}

  • (c) R − {−1/2, 1}

  • (d) None of these

     
MCQ

Solution

(c) R − {−1/2, 1}

\[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]
\[\text{ Let }  y = \frac{x^2 - x}{x^2 + 2x} \left[\text{  Also,}  x \neq 0 \right]\]
\[ \Rightarrow y = \frac{x(x - 1)}{x(x + 2)}\]
\[ \Rightarrow y = \frac{(x - 1)}{(x + 2)}\]
\[ \Rightarrow xy + 2y = x - 1\]
\[ \Rightarrow x = \frac{2y + 1}{1 - y}\]
\[\text{ Here } , 1 - y \neq 0 . \]
\[\text{ or } , y \neq 1 . \]
\[\text{ Also } , x \neq 0\]
\[ \Rightarrow \frac{2y + 1}{1 - y} \neq 0\]
\[ \Rightarrow y \neq - \frac{1}{2}\]
\[\text{ Thus, range  } (f) = R - { - \frac{1}{2}, 1} . \]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 16 | Page 43

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If f(x) = x2, find `(f(1.1) - f(1))/((1.1 - 1))`


fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Express the following logarithmic equation in exponential form

log2 64 = 6


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Write the following expression as sum or difference of logarithm

`log ("pq"/"rs")`


Write the following expression as sum or difference of logarithm

In `(("a"^3 ("a" - 2)^2)/sqrt("b"^2 + 5))`


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


Solve for x.

log2 + log(x + 3) – log(3x – 5) = log3


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


Answer the following:

A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 5


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

 Calculate the value of `"gg" (1/2)`


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×