English

Let F and G Be Two Real Functions Defined by F ( X ) = √ X + 1 and G ( X ) = √ 9 − X 2 . Then, Describe Function: (Ii) G − F - Mathematics

Advertisements
Advertisements

Question

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 

Solution

Given:

\[f\left( x \right) = \sqrt{x + 1}\text{ and } g\left( x \right) = \sqrt{9 - x^2}\]

Clearly,

\[f\left( x \right) = \sqrt{x + 1}\]  is defined for all x ≥ - 1.
Thus, domain (f) = [1, ∞]
Again,
 
\[g\left( x \right) = \sqrt{9 - x^2}\]   is defined for  9 -x2 ≥ 0 ⇒ x2 - 9 ≤ 0
⇒ x2 - 32 ≤ 0
⇒ (x + 3)(x - 3) ≤ 0
\[x \in \left[ - 3, 3 \right]\]
Thus, domain (g) = [ - 3, 3]
Now,
domain ( f ) ∩ domain( g ) = [ -1, ∞] ∩ [- 3, 3]    = [ -1, 3]
(ii) ( g -f ) : [-1 , 3] → R is given by ( g -f ) (x) = g (x)-f (x)
=\[\sqrt{9 - x^2} - \sqrt{x + 1}\]
 
 


 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.4 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.4 | Q 4.2 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B? 

 


If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

If ƒ(m) = m2 − 3m + 1, find f(x + 1)


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


Express the area A of a square as a function of its perimeter P


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


Express the following exponential equation in logarithmic form

231 = 23


Prove that `"b"^(log_"b""a"` = a


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Answer the following:
If log3 [log2 (log3x)] = 1, show that x = 6561

Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


Answer the following:

Find the domain of the following function.

f(x) = x!


Given the function f: x → x2 – 5x + 6, evaluate f(2)


Find the range of the following functions given by `|x - 4|/(x - 4)`


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


Find the range of the following functions given by f(x) = 1 + 3 cos2x

(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The range of the function f(x) = x2 + 2x+ 2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×