English

Find the Set of Values of X for Which the Functions F(X) = 3x2 − 1 and G(X) = 3 + X Are Equal. - Mathematics

Advertisements
Advertisements

Question

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.

Solution

It is given that the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.

\[\therefore f\left( x \right) = g\left( x \right)\]
\[ \Rightarrow 3 x^2 - 1 = 3 + x\]
\[ \Rightarrow 3 x^2 - x - 4 = 0\]
\[ \Rightarrow \left( x + 1 \right)\left( 3x - 4 \right) = 0\]

\[\Rightarrow x + 1 = 0 \text{ or }  3x - 4 = 0\]
\[ \Rightarrow x = - 1 \text{ or } x = \frac{4}{3}\]

Hence, the set of values of x for which the given functions are equal is \[\left\{ - 1, \frac{4}{3} \right\}\] .

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.5 | Q 17 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


If f(m) = m2 − 3m + 1, find `f(1/2)`


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Express the area A of circle as a function of its radius r


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Express the following exponential equation in logarithmic form

e–x = 6


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Select the correct answer from given alternatives.

If f : R → R is defined by f(x) = x3 then f–1 (8) is equal to :


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Simplify, log (log x4) – log (log x)


Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


Answer the following:

Find the range of the following function.

f(x) = `x/(9 + x^2)`


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


A function f is defined by f(x) = 2x – 3 find x such that f(x) = f(1 – x)


Mapping f: R → R which is defined as f(x) = sin x, x ∈ R will be ______ 


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


Let f : R → R be defined by 

f(x) = `{(3x;    x > 2),(2x^2;    1 ≤ x ≤ 2), (4x;   x < 1):}`

Then f(-2) + f(1) + f(3) is ______ 


Find the range of the following functions given by `sqrt(16 - x^2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×