English

The domain of the function f ( x ) = √ 2 − 2 x − x 2 is - Mathematics

Advertisements
Advertisements

Question

The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

Options

  • (a)  \[\left[ - \sqrt{3}, \sqrt{3} \right]\]

     

  • (b)  \[\left[ - 1 - \sqrt{3}, - 1 + \sqrt{3} \right]\]

     

  • (c) [−2, 2]

  • (d)  \[\left[ - 2 - \sqrt{3}, - 2 + \sqrt{3} \right]\]

     

MCQ

Solution

(b)  \[\left[ - 1 - \sqrt{3}, - 1 + \sqrt{3} \right]\]

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\]
\[\text{ Since } , 2 - 2x - x^2 \geq 0, \]
\[ x^2 + 2x - 2 \leq 0\]
\[ \Rightarrow x^2 - 2x - 2 + 1 - 1 \leq 0\]
\[ \Rightarrow \left( x - 1 \right)^2 - \left( \sqrt{3} \right)^2 \leq 0\]
\[ \Rightarrow \left[ x - \left( - 1 - \sqrt{3} \right) \right]\left[ x - \left( - 1 + \sqrt{3} \right) \right] \leq 0\]
\[ \Rightarrow \left( - 1 - \sqrt{3} \right) \leq x \leq \left( - 1 + \sqrt{3} \right)\]
\[\text{ Thus, dom} (f) = \left[ - 1 - \sqrt{3}, - 1 + \sqrt{3} \right] . \]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 31 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


The range of the function f(x) = |x − 1| is


Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


If f(m) = m2 − 3m + 1, find `f(1/2)`


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following exponential equation in logarithmic form

e–x = 6


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Find the domain of f(x) = ln (x − 5)


Write the following expression as sum or difference of logarithm

In `(("a"^3 ("a" - 2)^2)/sqrt("b"^2 + 5))`


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


The equation logx2 16 + log2x 64 = 3 has,


Select the correct answer from given alternatives

If f(x) = 2x2 + bx + c and f(0) = 3 and f(2) = 1, then f(1) is equal to


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Check if this relation is a function


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the height of a person whose forehand length is 40 cm


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×