English

The Function F : R → R is Defined by F(X) = Cos2 X + Sin4 X. Then, F(R) = (A) [3/4, 1) (B) (3/4, 1] (C) [3/4, 1] (D) (3/4, 1) - Mathematics

Advertisements
Advertisements

Question

The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =

Options

  • (a) [3/4, 1)

  • (b) (3/4, 1]

  • (c) [3/4, 1]

  • (d) (3/4, 1)

     
MCQ

Solution

(c) [3/4, 1] 

Given:
f(x) = cos2x + sin4x

\[\Rightarrow f\left( x \right) = 1 - \sin^2 x + \sin^4 x\]

\[\Rightarrow f\left( x \right) = \left( \sin^2 x - \frac{1}{2} \right)^2 + \frac{3}{4}\] The minimum value of  \[f\left( x \right)\] is \[\frac{3}{4}\]

Also,

\[\sin^2 x \leq 1\]

\[ \Rightarrow \sin^2 x - \frac{1}{2} \leq \frac{1}{2}\]

\[ \Rightarrow \left( \sin^2 x - \frac{1}{2} \right)^2 \leq \frac{1}{4}\]

\[ \Rightarrow \left( \sin^2 x - \frac{1}{2} \right)^2 + \frac{3}{4} \leq \frac{1}{4} + \frac{3}{4}\]

\[ \Rightarrow f\left( x \right) \leq 1\]

The maximum value of

\[f\left( x \right)\]  is 1.

∴ f(R) = (3/4, 1)

 
 
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 21 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

What is the fundamental difference between a relation and a function? Is every relation a function?


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(b) f2 = {(1, 1), (2, 7), (3, 5)}


If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

Write the range of the function f(x) = ex[x]x ∈ R.

 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Express the area A of a square as a function of its perimeter P


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Write the following expression as sum or difference of logarithm

`log (sqrt(x) root(3)(y))`


Write the following expression as sum or difference of logarithm

In `(("a"^3 ("a" - 2)^2)/sqrt("b"^2 + 5))`


If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7


Answer the following:

If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b


A graph representing the function f(x) is given in it is clear that f(9) = 2

For what value of x is f(x) = 1?


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


If f(x) = 5x - 3, then f-1(x) is ______ 


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Find the domain of the following function.

f(x) = `x/(x^2 + 3x + 2)`


Find the domain of the following function.

f(x) = [x] + x


Find the range of the following functions given by f(x) = 1 + 3 cos2x

(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


The range of the function y = `1/(2 - sin3x)` is ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×