English

If E F ( X ) = 10 + X 10 − X , X ∈ (−10, 10) and F ( X ) = K F ( 200 X 100 + X 2 ) , Then K =(A) 0.5 (B) 0.6 (C) 0.7 (D) 0.8 - Mathematics

Advertisements
Advertisements

Question

If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

Options

  • (a) 0.5

  • (b) 0.6

  • (c) 0.7

  • (d) 0.8

MCQ

Solution

(a) 0.5

\[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\]

\[\Rightarrow f(x) = \log {}_e \left( \frac{10 + x}{10 - x} \right)\]    ...(1)

\[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\]

\[\Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) = k \log_e \left( \frac{10 + \frac{200x}{100 + x^2}}{10 - \frac{200x}{100 + x^2}} \right) {\text{ from }  (1)}\]

\[ \Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) = \text{ k } l {og}_e \left( \frac{1000 + 10 x^2 + 200x}{1000 + 10 x^2 - 200x} \right)\]

\[ \Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) =\text{  k}  l {og}_e \left( \frac{\left( x + 10 \right)^2}{\left( x - 10 \right)^2} \right)\]

\[ \Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) = 2\text{ k }  l {og}_e \frac{\left( x + 10 \right)}{\left( x - 10 \right)}\]

\[ \Rightarrow 1 = 2k\]

\[ \Rightarrow k = 1/2 = 0 . 5\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 25 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


fgh are three function defined from R to R as follow:

(i) f(x) = x2

Find the range of function.

 

If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B? 

 


The range of f(x) = cos [x], for π/2 < x < π/2 is


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\]  x ∈ R, then

 

If f(x) = sin [π2x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then


The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following logarithmic equation in exponential form

ln 1 = 0


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


Solve for x.

log2 + log(x + 3) – log(3x – 5) = log3


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


The equation logx2 16 + log2x 64 = 3 has,


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Find the range of the following function.

f(x) = [x] – x


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×