English

If F(X) = Cos (Log X), Then Value of F ( X ) F ( 4 ) − 1 2 { F ( X 4 ) + F ( 4 X ) } is (A) 1 (B) −1 (C) 0 (D) ±1 - Mathematics

Advertisements
Advertisements

Question

If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 

Options

  • (a) 1

  • (b) −1

  • (c) 0

  • (d) ±1

     
MCQ

Solution

(c) 0

Given : f(x) = cos (log x)
Then, \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\]

\[= \cos (\log x)\cos(\log 4) - \frac{1}{2}\left\{ \cos \left( \log\frac{x}{4} \right) + \cos\left( \log4x \right) \right\}\]
\[ = \frac{1}{2}\left[ \cos\left( \log x + \log 4 \right) + \cos \left( \log x - \log4 \right) \right] - \frac{1}{2}\left\{ \cos \left( \log\frac{x}{4} \right) + \cos\left( \log4x \right) \right\}\]
\[ = \frac{1}{2}\left\{ \cos (\log 4x) + \cos \left( \log \frac{x}{4} \right) - \cos \left( \log \frac{x}{4} \right) - \cos \left( \log 4x \right) \right\}\]
\[ = \frac{1}{2} \times 0 = 0\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 12 | Page 43

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

What is the fundamental difference between a relation and a function? Is every relation a function?


\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

Check if the relation given by the equation represents y as function of x:

2x + 3y = 12


Check if the relation given by the equation represents y as function of x:

x2 − y = 25


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Express the area A of a square as a function of its perimeter P


Express the area A of circle as a function of its radius r


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Answer the following:

A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Find the domain of the following function.

f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = `x/(x + 1)`, g(x) = `x/(1 - x)`


Find the range of the following functions given by `sqrt(16 - x^2)`


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.


Which of the following functions is NOT one-one?


The period of the function

f(x) = `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×