Advertisements
Advertisements
Question
The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is
Options
(a) [−1, 2) ∪ [3, ∞)
(b) (−1, 2) ∪ [3, ∞)
(c) [−1, 2] ∪ [3, ∞)
(d) None of these
Solution
(a) [−1, 2) ∪ [3, ∞)
\[(x - 2) \neq 0\]
\[ \Rightarrow x \neq 2 . . . (1)\]
\[\text{ Also, } \]
\[\frac{(x + 1)(x - 3)}{(x - 2)} \geq 0\]
\[ \Rightarrow \frac{(x + 1)(x - 3)(x - 2)}{(x - 2 )^2} \geq 0\]
\[ \Rightarrow (x + 1)(x - 3)(x - 2) \geq 0\]
\[ \Rightarrow x \in [ - 1, 2) \cup [3, \infty ) . . . . . (2)\]
\[\text{ From (1) and (2),} \]
\[x \in [ - 1, 2) \cup [3, \infty ) \]
APPEARS IN
RELATED QUESTIONS
Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.
- {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
- {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
- {(1, 3), (1, 5), (2, 5)}
Define a function as a correspondence between two sets.
et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.
Let A = [p, q, r, s] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?
If \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(vii) f2 + 7f
Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + g, f − g, fg and \[\frac{f}{g}\] .
If f(x) = cos [π2]x + cos [−π2] x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).
Let \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.
If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]
If f(x) = 4x − x2, x ∈ R, then write the value of f(a + 1) −f(a − 1).
Let f and g be two real functions given by
f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}
Find the domain of fg.
If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to
Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =
The domain of definition of \[f\left( x \right) = \sqrt{4x - x^2}\] is
The domain of definition of \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is
The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is
If f(m) = m2 − 3m + 1, find f(− x)
Which of the following relations are functions? If it is a function determine its domain and range:
{(1, 1), (3, 1), (5, 2)}
Check if the following relation is a function.
Find the domain and range of the following function.
f(x) = 7x2 + 4x − 1
Express the area A of a square as a function of its perimeter P
Express the following exponential equation in logarithmic form
`"e"^(1/2)` = 1.6487
Write the following expression as sum or difference of logarithm
In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`
Write the following expression as a single logarithm.
`1/3 log (x - 1) + 1/2 log (x)`
Answer the following:
Identify the following relation is the function? If it is a function determine its domain and range.
{(0, 0), (1, 1), (1, –1), (4, 2), (4, –2), (9, 3), (9, –3), (16, 4), (16, –4)}
Answer the following:
If f(x) = 3x + a and f(1) = 7 find a and f(4)
Answer the following:
Without using log tables, prove that `2/5 < log_10 3 < 1/2`
Answer the following:
Find the range of the following function.
f(x) = |x – 5|
Answer the following:
Find the range of the following function.
f(x) = 1 + 2x + 4x
Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?
Given the function f: x → x2 – 5x + 6, evaluate f(2a)
A graph representing the function f(x) is given in it is clear that f(9) = 2
Describe the following Range
A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`
Find the domain of the following function.
f(x) = `x/(x^2 + 3x + 2)`
Find the domain of the following function.
f(x) = [x] + x
Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`