English

The Domain of the Function F ( X ) = √ ( X + 1 ) ( X − 3 ) X − 2 is (A) [−1, 2) ∪ [3, ∞) (B) (−1, 2) ∪ [3, ∞) (C) [−1, 2] ∪ [3, ∞) (D) None of These - Mathematics

Advertisements
Advertisements

Question

The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

Options

  • (a) [−1, 2) ∪ [3, ∞)

  • (b) (−1, 2) ∪ [3, ∞)

  • (c) [−1, 2] ∪ [3, ∞)

  • (d) None of these

     
MCQ

Solution

(a) [−1, 2) ∪ [3, ∞) 

\[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\]
\[\text{ For f(x) to be defined, }  \]
\[(x - 2) \neq 0\]
\[ \Rightarrow x \neq 2 . . . (1)\]
\[\text{ Also, } \]
\[\frac{(x + 1)(x - 3)}{(x - 2)} \geq 0\]
\[ \Rightarrow \frac{(x + 1)(x - 3)(x - 2)}{(x - 2 )^2} \geq 0\]
\[ \Rightarrow (x + 1)(x - 3)(x - 2) \geq 0\]
\[ \Rightarrow x \in [ - 1, 2) \cup [3, \infty ) . . . . . (2)\]
\[\text{ From (1) and (2),} \]
\[x \in [ - 1, 2) \cup [3, \infty ) \]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 33 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

  1. {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
  2. {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
  3. {(1, 3), (1, 5), (2, 5)}

Define a function as a correspondence between two sets.

 

et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

If f(m) = m2 − 3m + 1, find f(− x)


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


Check if the following relation is a function.


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Express the area A of a square as a function of its perimeter P


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(0, 0), (1, 1), (1, –1), (4, 2), (4, –2), (9, 3), (9, –3), (16, 4), (16, –4)}


Answer the following:

If f(x) = 3x + a and f(1) = 7 find a and f(4)


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


Find the domain of the following function.

f(x) = `x/(x^2 + 3x + 2)`


Find the domain of the following function.

f(x) = [x] + x


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×