English

If f ( x ) = 1 1 − x , show that f[f[f(x)]] = x. - Mathematics

Advertisements
Advertisements

Question

If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 

Solution

Given

 \[f\left( x \right) = \frac{1}{1 - x}\] 

Thus,

\[f\left\{ f\left( x \right) \right\} = f\left\{ \frac{1}{1 - x} \right\}\]  

\[= \frac{1}{1 - \frac{1}{1 - x}}\]

\[= \frac{1}{\frac{1 - x - 1}{1 - x}}\]
\[ = \frac{1 - x}{- x}\]
\[ = \frac{x - 1}{x}\]
Again ,
\[f\left[ f\left\{ f\left( x \right) \right\} \right] = f\left[ \frac{x - 1}{x} \right]\]
\[= \frac{1}{1 - \left( \frac{x - 1}{x} \right)}\]
\[ = \frac{1}{\frac{x - x + 1}{x}}\]
\[ = \frac{x}{1}\]
\[ = x\]
Therefore,  f[f{f(x)}] = x.
Hence proved.
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.2 [Page 11]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.2 | Q 4 | Page 11

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Write the range of the function f(x) = ex[x]x ∈ R.

 

If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find `f(1/2)`


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


If f(x) = 3x + a and f(1) = 7 find a and f(4).


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Check if the relation given by the equation represents y as function of x:

x + y2 = 9


If f(m) = m2 − 3m + 1, find f(−3)


Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Express the area A of circle as a function of its circumference C.


Express the following exponential equation in logarithmic form

231 = 23


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following exponential equation in logarithmic form

e2 = 7.3890


Find the domain of f(x) = log10 (x2 − 5x + 6)


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


The equation logx2 16 + log2x 64 = 3 has,


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

If f(x) = log(1 – x), 0 ≤ x < 1 show that `"f"(1/(1 + x))` = f(1 – x) – f(– x)


Answer the following:

Find the range of the following function.

f(x) = `x/(9 + x^2)`


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


Given the function f: x → x2 – 5x + 6, evaluate f(– 1)


A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


Find the range of the following functions given by f(x) = |x − 3|


The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.


Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×