हिंदी

The Domain of the Function F ( X ) = √ ( X + 1 ) ( X − 3 ) X − 2 is (A) [−1, 2) ∪ [3, ∞) (B) (−1, 2) ∪ [3, ∞) (C) [−1, 2] ∪ [3, ∞) (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

विकल्प

  • (a) [−1, 2) ∪ [3, ∞)

  • (b) (−1, 2) ∪ [3, ∞)

  • (c) [−1, 2] ∪ [3, ∞)

  • (d) None of these

     
MCQ

उत्तर

(a) [−1, 2) ∪ [3, ∞) 

\[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\]
\[\text{ For f(x) to be defined, }  \]
\[(x - 2) \neq 0\]
\[ \Rightarrow x \neq 2 . . . (1)\]
\[\text{ Also, } \]
\[\frac{(x + 1)(x - 3)}{(x - 2)} \geq 0\]
\[ \Rightarrow \frac{(x + 1)(x - 3)(x - 2)}{(x - 2 )^2} \geq 0\]
\[ \Rightarrow (x + 1)(x - 3)(x - 2) \geq 0\]
\[ \Rightarrow x \in [ - 1, 2) \cup [3, \infty ) . . . . . (2)\]
\[\text{ From (1) and (2),} \]
\[x \in [ - 1, 2) \cup [3, \infty ) \]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 33 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

fgh are three function defined from R to R as follow:

(i) f(x) = x2

Find the range of function.

 

fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


Let f(x) = |x − 1|. Then,


Which of the following are functions?


If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Answer the following:

If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b


Answer the following:

Simplify, log (log x4) – log (log x)


Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the height of a person whose forehand length is 40 cm


A function f is defined by f(x) = 2x – 3 find x such that f(x) = f(1 – x)


The domain of the function f(x) = `sqrtx` is ______.


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Find the range of the following functions given by f(x) = 1 + 3 cos2x

(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×