हिंदी

If F(X) = X2 − 3x + 4, Then Find the Values of X Satisfying the Equation F(X) = F(2x + 1). - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

उत्तर

Given:
f (x) = x2 – 3x + 4
Therefore,
(2x + 1) = (2x + 1)– 3(2x + 1) + 4
                = 4x2 + 1 + 4x – 6x – 3 + 4
                = 4x2 – 2x + 2
Now,
(x) = f (2x + 1)
⇒ x2 – 3x + 4 = 4x2 – 2x + 2
⇒ 4x2 – x2 – 2x + 3x + 2 – 4 = 0
⇒ 3x2 + x – 2 = 0
⇒ 3x2 + 3x – 2x – 2 = 0
⇒ 3x(x + 1) – 2(x +1) = 0
⇒ (3x – 2)(x +1) = 0
⇒ (x + 1) = 0  or  ( 3x – 2) = 0

\[\Rightarrow x = - 1 \text{ or }  x = \frac{2}{3}\]
Hence,
\[x = - 1, \frac{2}{3}\] 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.2 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.2 | Q 1 | पृष्ठ ११

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


fgh are three function defined from R to R as follow:

(i) f(x) = x2

Find the range of function.

 

If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


If f(x) = (x − a)2 (x − b)2, find f(a + b).

 

If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

Write the domain and range of  \[f\left( x \right) = \sqrt{x - \left[ x \right]}\] .

 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

The range of the function f(x) = |x − 1| is


If f(m) = m2 − 3m + 1, find f(−3)


If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find f(x + 1)


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Express the area A of circle as a function of its radius r


Express the following logarithmic equation in exponential form

ln e = 1


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

Show that, `log ("a"^2/"bc") + log ("b"^2/"ca") + log ("c"^2/"ab")` = 0


Answer the following:

Simplify, log (log x4) – log (log x)


Given the function f: x → x2 – 5x + 6, evaluate f(2)


A graph representing the function f(x) is given in it is clear that f(9) = 2

For what value of x is f(x) = 1?


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the height of a person whose forehand length is 40 cm


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


If the domain of function f(a) = a2 - 4a + 8 is (-∞, ∞), then the range of function is ______


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f – g)(x)


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×