हिंदी

Let F(X) = |X − 1|. Then, (A) F(X2) = [F(X)]2 (B) F(X + Y) = F(X) F(Y) (C) F(|X| = |F(X)| (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

Let f(x) = |x − 1|. Then,

विकल्प

  • (a) f(x2) = [f(x)]2

  • (b) f(x + y) = f(xf(y)

  • (c) f(|x| = |f(x)|

  • (d) None of these

     
MCQ

उत्तर

(d) None of these

\[f(x) = \left| x - 1 \right|\]
\[\text{ Since,}  \left| x^2 - 1 \right| \neq \left| x - 1 \right| {}^2 , \]
\[f( x^2 ) \neq (f(x)) {}^2 \]
\[\text { Thus, (i) is wrong}  . \]
\[\text{ Since, } \left| x + y - 1 \right| \neq \left| x - 1 \right|\left| y - 1 \right|, \]
\[f(x + y) \neq f(x) f(y)\]
\[\text{ Thus, (ii) is wrong}  . \]
\[\text{ Since } \left| \left| x \right| - 1 \right| \neq \left| \left| x - 1 \right| \right| = \left| x - 1 \right|, \]
\[f\left( \left| x \right| \right) \neq \left| f(x) \right|\]
\[\text{ Thus, (iii) is wrong } . \]
\[\text{ Hence, none of the given options is the answer} .\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 6 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

fgh are three function defined from R to R as follow:

(i) f(x) = x2

Find the range of function.

 

The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Check if the following relation is a function.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


lf f(x) = 3(4x+1), find f(– 3)


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following logarithmic equation in exponential form

ln 1 = 0


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Select the correct answer from given alternatives.

Find x, if 2log2 x = 4


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Select the correct answer from given alternatives.

If f : R → R is defined by f(x) = x3 then f–1 (8) is equal to :


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:

Find the domain of the following function.

f(x) = x!


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The domain of the real valued function f(x) = `sqrt((x - 2)/(3 - x))` is ______.


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×