Advertisements
Advertisements
प्रश्न
Let f(x) = |x − 1|. Then,
विकल्प
(a) f(x2) = [f(x)]2
(b) f(x + y) = f(x) f(y)
(c) f(|x| = |f(x)|
(d) None of these
उत्तर
(d) None of these
\[\text{ Since,} \left| x^2 - 1 \right| \neq \left| x - 1 \right| {}^2 , \]
\[f( x^2 ) \neq (f(x)) {}^2 \]
\[\text { Thus, (i) is wrong} . \]
\[\text{ Since, } \left| x + y - 1 \right| \neq \left| x - 1 \right|\left| y - 1 \right|, \]
\[f(x + y) \neq f(x) f(y)\]
\[\text{ Thus, (ii) is wrong} . \]
\[\text{ Since } \left| \left| x \right| - 1 \right| \neq \left| \left| x - 1 \right| \right| = \left| x - 1 \right|, \]
\[f\left( \left| x \right| \right) \neq \left| f(x) \right|\]
\[\text{ Thus, (iii) is wrong } . \]
\[\text{ Hence, none of the given options is the answer} .\]
APPEARS IN
संबंधित प्रश्न
A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [y: f(y) = −1].
Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine
(c) whether f(xy) = f(x) : f(y) holds
f, g, h are three function defined from R to R as follow:
(i) f(x) = x2
Find the range of function.
The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]
The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]
Show that f is a function and g is not a function.
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(vii) f2 + 7f
If f(x) = loge (1 − x) and g(x) = [x], then determine function:
(i) f + g
Write the domain and range of the function \[f\left( x \right) = \frac{x - 2}{2 - x}\] .
The range of the function \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\] is
The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =
f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,
If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\] for all non-zero x, then f(x) =
The domain of definition of \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is
Which of the following relations are functions? If it is a function determine its domain and range:
{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}
If f(x) = `{(x^2 + 3"," x ≤ 2),(5x + 7"," x > 2):},` then find f(0)
Check if the following relation is a function.
Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.
{(1, 1), (2, 1), (3, 1), (4, 1)}
lf f(x) = 3(4x+1), find f(– 3)
Express the following exponential equation in logarithmic form
10−2 = 0.01
Express the following logarithmic equation in exponential form
ln 1 = 0
Express the following logarithmic equation in exponential form
In `1/2` = – 0.693
If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b
If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain
Select the correct answer from given alternatives.
Find x, if 2log2 x = 4
Select the correct answer from given alternatives.
If f(x) =`1/(1 - x)`, then f{f[f(x)]} is
Select the correct answer from given alternatives.
If f : R → R is defined by f(x) = x3 then f–1 (8) is equal to :
Answer the following:
Find whether the following function is one-one
f : R → R defined by f(x) = x2 + 5
Answer the following:
Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1
Answer the following:
If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b
Answer the following:
Find the domain of the following function.
f(x) = x!
Find the domain of the following function.
f(x) = `sqrtlog(x^2 - 6x + 6)`
Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)
A function f is defined by f(x) = 2x – 3 find x such that f(x) = x
The domain of the real valued function f(x) = `sqrt((x - 2)/(3 - x))` is ______.
Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`
Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`
The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.
The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.
If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.