हिंदी

F is a Real Valued Function Given by F ( X ) = 27 X 3 + 1 X 3 and α, β Are Roots of 3 X + 1 X = 12 . Then,(A) F(α) ≠ F(β) (B) F(α) = 10 (C) F(β) = −10 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

विकल्प

  • (a) f(α) ≠ f(β)

  • (b) f(α) = 10

  • (c) f(β) = −10

  • (d) None of these

     
MCQ

उत्तर

(d) None of these

Given: \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] \[\Rightarrow f\left( x \right) = \left( 3x + \frac{1}{x} \right)\left( 9 x^2 + \frac{1}{x^2} - 3 \right)\]
\[\Rightarrow f\left( x \right) = \left( 3x + \frac{1}{x} \right)\left( \left( 3x + \frac{1}{x} \right)^2 - 9 \right)\]
\[\Rightarrow f\left( \alpha \right) = \left( 3\alpha + \frac{1}{\alpha} \right)\left( \left( 3\alpha + \frac{1}{\alpha} \right)^2 - 9 \right)\]
Since α and β are the roots of
 
\[3x + \frac{1}{x} = 12\]
\[3\alpha + \frac{1}{\alpha} = 12 \text{ and  } 3\beta + \frac{1}{\beta} = 12\]\[\Rightarrow f\left( \alpha \right) = 12\left( \left( 12 \right)^2 - 9 \right)\] and \[f\left( \beta \right) = 12\left( \left( 12 \right)^2 - 9 \right)\] \[\Rightarrow f\left( \alpha \right) = f\left( \beta \right) = 12\left( \left( 12 \right)^2 - 9 \right)\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 26 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If f(x) = (x − a)2 (x − b)2, find f(a + b).

 

If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 


If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


Write the range of the function f(x) = ex[x]x ∈ R.

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


The range of f(x) = cos [x], for π/2 < x < π/2 is


If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Check if the following relation is a function.


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one


Express the following exponential equation in logarithmic form

10−2 = 0.01


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Select the correct answer from given alternatives

The domain of `1/([x] - x)` where [x] is greatest integer function is


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

Show that, `log ("a"^2/"bc") + log ("b"^2/"ca") + log ("c"^2/"ab")` = 0


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


Given the function f: x → x2 – 5x + 6, evaluate f(2)


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


Let A = {1, 2, 3, 4} and B = N. Let f : A → B be defined by f(x) = x3 then, find the range of f


The domain of the real valued function f(x) = `sqrt((x - 2)/(3 - x))` is ______.


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×