हिंदी

The Range of F(X) = Cos [X], for π/2 < X < π/2 is (A) {−1, 1, 0} (B) {Cos 1, Cos 2, 1} (C) {Cos 1, −Cos 1, 1} (D) [−1, 1] - Mathematics

Advertisements
Advertisements

प्रश्न

The range of f(x) = cos [x], for π/2 < x < π/2 is

विकल्प

  • (a) {−1, 1, 0}

  • (b) {cos 1, cos 2, 1}

  • (c) {cos 1, −cos 1, 1}

  • (d) [−1, 1]

     
MCQ

उत्तर

(b) {cos 1, cos 2, 1}

Since, f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\]

\[- \frac{\pi}{2} < x < \frac{\pi}{2}\]
\[ \Rightarrow - 1 . 57 < x < 1 . 57\]
\[ \Rightarrow [x] \in { - 1, 0, 1, 2}\]
\[\text{ Thus } , \cos [x] = {\cos ( - 1), \cos 0, \cos1, \cos 2 }\]
\[\text{ Range of } f(x) = {\cos 1, 1, \cos 2}\]

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 7 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

  1. {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
  2. {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
  3. {(1, 3), (1, 5), (2, 5)}

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 


If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

The domain of definition of the function f(x) = log |x| is


The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


If f(m) = m2 − 3m + 1, find f(− x)


If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


If f(m) = m2 − 3m + 1, find f(0)


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Express the area A of circle as a function of its diameter d


Express the following exponential equation in logarithmic form

25 = 32


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


Solve for x.

log2 + log(x + 3) – log(3x – 5) = log3


Solve for x.

log2 x + log4 x + log16 x = `21/4`


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

If f(x) = 3x + a and f(1) = 7 find a and f(4)


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

Find x, if x = 33log32  


Answer the following:

If b2 = ac. prove that, log a + log c = 2 log b


Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


Find the domain of the following function.

f(x) = `x/(x^2 + 3x + 2)`


Find the domain of the following function.

f(x) = [x] + x


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.


The range of the function y = `1/(2 - sin3x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×