Advertisements
Advertisements
प्रश्न
Express the area A of circle as a function of its diameter d
उत्तर
Diameter (d) = 2r
∴ r = `"d"/2`
Area (A) = `pi"r"^2`
= `(pi"d"^2)/4`
APPEARS IN
संबंधित प्रश्न
f, g, h are three function defined from R to R as follow:
(i) f(x) = x2
Find the range of function.
If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.
If for non-zero x, af(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(iii) f g
If f(x) = loge (1 − x) and g(x) = [x], then determine function:
(iii) \[\frac{f}{g}\]
Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + g, f − g, fg and \[\frac{f}{g}\] .
The domain of the function
Which of the following relations are functions? If it is a function determine its domain and range:
{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.
Check if the following relation is a function.
Check if the following relation is a function.
Find the domain and range of the following function.
f(x) = `sqrt((x - 2)(5 - x)`
Check the injectivity and surjectivity of the following function.
f : R → R given by f(x) = x3
Show that if f : A → B and g : B → C are onto, then g ° f is also onto
Express the following exponential equation in logarithmic form
25 = 32
Express the following exponential equation in logarithmic form
54° = 1
Express the following exponential equation in logarithmic form
231 = 23
Express the following exponential equation in logarithmic form
`"e"^(1/2)` = 1.6487
Express the following logarithmic equation in exponential form
ln 1 = 0
Write the following expression as a single logarithm.
`1/3 log (x - 1) + 1/2 log (x)`
Write the following expression as a single logarithm.
ln (x + 2) + ln (x − 2) − 3 ln (x + 5)
If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b
If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)
Answer the following:
A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist
A graph representing the function f(x) is given in it is clear that f(9) = 2
Describe the following Domain
A graph representing the function f(x) is given in it is clear that f(9) = 2
What is the image of 6 under f?
A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0
The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.
Length ‘x’ of forehand (in cm) |
Height 'y' (in inches) |
35 | 56 |
45 | 65 |
50 | 69.5 |
55 | 74 |
Find the height of a person whose forehand length is 40 cm
The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.
Length ‘x’ of forehand (in cm) |
Height 'y' (in inches) |
35 | 56 |
45 | 65 |
50 | 69.5 |
55 | 74 |
Find the length of forehand of a person if the height is 53.3 inches
Let A = {1, 2, 3, 4} and B = N. Let f : A → B be defined by f(x) = x3 then, find the range of f
If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..
Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`
Find the range of the following functions given by f(x) = |x − 3|
If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`
If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.
The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.
If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.
Let f(θ) = sin θ (sin θ + sin 3θ) then ______.