हिंदी

Answer the following: Find value of 3+log103432+12log10(494)+12log10(125) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`

योग

उत्तर

`(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`

= `(3 + log_10 7^3)/(2 + log_10 (49/4)^(1/2) + log_10 (1/25)^(1/2)`

= `(3 + 3.log_10 7)/(2 + log_10  7/2 + log_10  1/5)`

= `(3(1 + log_10 7))/(2 + log_10 (7/2 xx 1/5)`

= `(3(1 + log_10 7))/(2 + log_10 (7/10))`

= `(3(1 + log_10 7))/(2 + log_10 7 - log_10 10)`

= `(3(1 + log_10 7))/(2 + log_10 7 - 1)`   ...[∵ loga a = 1]

= `(3(1 + log_10 7))/(1 + log_10 7)`

= 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Miscellaneous Exercise 6.2 | Q II. (34) | पृष्ठ १३१

संबंधित प्रश्न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

The range of f(x) = cos [x], for π/2 < x < π/2 is


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

If f(m) = m2 − 3m + 1, find f(− x)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Express the following logarithmic equation in exponential form

log2 64 = 6


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


Prove that logbm a = `1/"m" log_"b""a"`


If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7


If `log(( x - y)/4) = logsqrt(x) + log sqrt(y)`, show that (x + y)2 = 20xy 


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

Show that `7log (15/16) + 6log(8/3) + 5log (2/5) + log(32/25)` = log 3


Answer the following:

Find the domain of the following function.

f(x) = x!


A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2


A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the length of forehand of a person if the height is 53.3 inches


The domain of the real valued function f(x) = `sqrt((x - 2)/(3 - x))` is ______.


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×