हिंदी

If E F ( X ) = 10 + X 10 − X , X ∈ (−10, 10) and F ( X ) = K F ( 200 X 100 + X 2 ) , Then K =(A) 0.5 (B) 0.6 (C) 0.7 (D) 0.8 - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

विकल्प

  • (a) 0.5

  • (b) 0.6

  • (c) 0.7

  • (d) 0.8

MCQ

उत्तर

(a) 0.5

\[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\]

\[\Rightarrow f(x) = \log {}_e \left( \frac{10 + x}{10 - x} \right)\]    ...(1)

\[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\]

\[\Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) = k \log_e \left( \frac{10 + \frac{200x}{100 + x^2}}{10 - \frac{200x}{100 + x^2}} \right) {\text{ from }  (1)}\]

\[ \Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) = \text{ k } l {og}_e \left( \frac{1000 + 10 x^2 + 200x}{1000 + 10 x^2 - 200x} \right)\]

\[ \Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) =\text{  k}  l {og}_e \left( \frac{\left( x + 10 \right)^2}{\left( x - 10 \right)^2} \right)\]

\[ \Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) = 2\text{ k }  l {og}_e \frac{\left( x + 10 \right)}{\left( x - 10 \right)}\]

\[ \Rightarrow 1 = 2k\]

\[ \Rightarrow k = 1/2 = 0 . 5\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 25 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Which one of the following is not a function?


If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

Which of the following are functions?


If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\]  x ∈ R, then

 

The range of the function f(x) = |x − 1| is


Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


If f(m) = m2 − 3m + 1, find `f(1/2)`


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


If f(m) = m2 − 3m + 1, find f(− x)


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Show that if f : A → B and g : B → C are onto, then g ° f is also onto


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Select the correct answer from given alternatives.

Find x, if 2log2 x = 4


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


The domain of the function f(x) = `sqrtx` is ______.


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


Find the range of the following functions given by f(x) = 1 + 3 cos2x

(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.


The range of the function f(x) = `""^(7 - x)P_(x - 3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×