Advertisements
Advertisements
प्रश्न
If \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =
विकल्प
(a) 0.5
(b) 0.6
(c) 0.7
(d) 0.8
उत्तर
(a) 0.5
\[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\]
\[\Rightarrow f(x) = \log {}_e \left( \frac{10 + x}{10 - x} \right)\] ...(1)
\[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\]
\[\Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) = k \log_e \left( \frac{10 + \frac{200x}{100 + x^2}}{10 - \frac{200x}{100 + x^2}} \right) {\text{ from } (1)}\]
\[ \Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) = \text{ k } l {og}_e \left( \frac{1000 + 10 x^2 + 200x}{1000 + 10 x^2 - 200x} \right)\]
\[ \Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) =\text{ k} l {og}_e \left( \frac{\left( x + 10 \right)^2}{\left( x - 10 \right)^2} \right)\]
\[ \Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) = 2\text{ k } l {og}_e \frac{\left( x + 10 \right)}{\left( x - 10 \right)}\]
\[ \Rightarrow 1 = 2k\]
\[ \Rightarrow k = 1/2 = 0 . 5\]
APPEARS IN
संबंधित प्रश्न
If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(iii) f g
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(v) \[\frac{g}{f}\]
If f(x) = loge (1 − x) and g(x) = [x], then determine function:
(i) f + g
If f(x) = loge (1 − x) and g(x) = [x], then determine function:
(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),
Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.
Which one of the following is not a function?
If f(x) = cos (log x), then the value of f(x2) f(y2) −
Which of the following are functions?
If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to
If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\] x ∈ R, then
The range of the function f(x) = |x − 1| is
Let \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?
If \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then
If f(m) = m2 − 3m + 1, find `f(1/2)`
Which of the following relations are functions? If it is a function determine its domain and range:
{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}
Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.
{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}
If f(m) = m2 − 3m + 1, find f(− x)
If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`
Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`
Find the domain and range of the following function.
g(x) = `(x + 4)/(x - 2)`
Show that if f : A → B and g : B → C are onto, then g ° f is also onto
Express the following exponential equation in logarithmic form
10−2 = 0.01
Express the following logarithmic equation in exponential form
log10 (0.001) = −3
If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)
Select the correct answer from given alternatives.
Find x, if 2log2 x = 4
The equation logx2 16 + log2x 64 = 3 has,
Answer the following:
Find whether the following function is one-one
f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}
Answer the following:
A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1
Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)
The domain of the function f(x) = `sqrtx` is ______.
The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.
Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`
Find the range of the following functions given by f(x) = 1 + 3 cos2x
(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)
The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.
The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval
Let f(θ) = sin θ (sin θ + sin 3θ) then ______.
Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.
The range of the function f(x) = `""^(7 - x)P_(x - 3)` is ______.