हिंदी

Let \[F\Left( X \Right) = \Sqrt{X^2 + 1}\ ] . Then, Which of the Following is Correct? - Mathematics

Advertisements
Advertisements

प्रश्न

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 

विकल्प

  • (a)  \[f\left( xy \right) = f\left( x \right)f\left( y \right)\]

     

  • (b)  \[f\left( xy \right) \geq f\left( x \right)f\left( y \right)\]

     

  •   (c)  \[f\left( xy \right) \leq f\left( x \right)f\left( y \right)\]

     

  • (d) none of these                        

     
MCQ

उत्तर

Given: 

\[f\left( x \right) = \sqrt{x^2 + 1}\]        .....(1)

Replacing x by in (1), we get
\[f\left( y \right) = \sqrt{y^2 + 1}\] 

\[\therefore f\left( x \right)f\left( y \right) = \sqrt{x^2 + 1}\sqrt{y^2 + 1}\]
\[ = \sqrt{\left( x^2 + 1 \right)\left( y^2 + 1 \right)}\]
\[ = \sqrt{x^2 y^2 + x^2 + y^2 + 1}\]

Also, replacing x by xy in (1), we get

\[f\left( xy \right) = \sqrt{x^2 y^2 + 1}\]

Now,

\[x^2 y^2 + 1 \leq x^2 y^2 + x^2 + y^2 + 1\]
\[ \Rightarrow \sqrt{x^2 y^2 + 1} \leq \sqrt{x^2 y^2 + x^2 + y^2 + 1}\]
\[ \Rightarrow f\left( xy \right) \leq f\left( x \right)f\left( y \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 43 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If f(x) = x2, find `(f(1.1) - f(1))/((1.1 - 1))`


Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(b) f2 = {(1, 1), (2, 7), (3, 5)}


et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


If f(x) = (x − a)2 (x − b)2, find f(a + b).

 

If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Write the range of the function f(x) = ex[x]x ∈ R.

 

Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\]  x ∈ R, then

 

If f(x) = sin [π2x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then


The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

Check if the following relation is function:


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


If f(m) = m2 − 3m + 1, find f(− x)


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Select the correct answer from given alternatives.

Find x, if 2log2 x = 4


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

Show that, logy x3 . logz y4 . logx z5 = 60


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Let A and B be any two sets such that n(B) = p, n(A) = q then the total number of functions f : A → B is equal to ______.


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


Range of f(x) = `1/(1 - 2 cosx)` is ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×