हिंदी

The equation logx2 16 + log2x 64 = 3 has, - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The equation logx2 16 + log2x 64 = 3 has,

विकल्प

  • one irrational solution

  • no prime solution

  • two real solutions

  • one integral solution

MCQ

उत्तर

two real solutions

Explanation;

logx2 16 + log2x 64 = 3

∴ `(log_(2)16)/(log_(2)x^2) + (log_(2)64)/(log_2(2x))` = 3

∴ `(log_(2)2^4)/(2log_(2)x) + (log_(2)2^6)/(log_(2)2 + log_(2)x` = 3

∴ `(4log_(2)2)/(2log_(2)x) + (6log_(2)2)/(1 + log_(2)x)` = 3

∴ `2/"m"+6/(1+"m")` = 3 .....[m = log2 x]

∴ 2(1 + m) + 6m = 3m(1 + m)

∴ 2 + 2m + 6m = 3m + 3m2

∴ 3m2 – 5m – 2 = 0

∴ 3m2 – 6m + 1m – 2 = 0

∴ 3m(m – 2) + 1(m – 2) = 0

∴ (m – 2)(3m + 1) = 0

∴ m – 2 = 0 or 3m + 1 = 0

∴ m = 2 or m = `-1/3`

∴ log2 x = 2 or log2 x = `-1/3`

∴ x = 4 or x = `2^(-1/3)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Miscellaneous Exercise 6.1 [पृष्ठ १२९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Miscellaneous Exercise 6.1 | Q I. (4) | पृष्ठ १२९

संबंधित प्रश्न

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(b) f2 = {(1, 1), (2, 7), (3, 5)}


If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (g) (x), (f − g) (x), (fg) (x) and  \[\left( \frac{f}{g} \right) \left( x \right)\] .

 

Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


Check if the following relation is function:


Check if the following relation is a function.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Express the area A of circle as a function of its circumference C.


An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Express the following exponential equation in logarithmic form

25 = 32


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Select the correct answer from given alternatives

The domain of `1/([x] - x)` where [x] is greatest integer function is


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

Show that `7log (15/16) + 6log(8/3) + 5log (2/5) + log(32/25)` = log 3


Answer the following:

Find the range of the following function.

f(x) = `x/(9 + x^2)`


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


Let A = {1, 2, 3, 4} and B = N. Let f : A → B be defined by f(x) = x3 then, find the range of f


The domain of the function f(x) = `sqrtx` is ______.


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Find the range of the following functions given by f(x) = |x − 3|


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


Range of f(x) = `1/(1 - 2 cosx)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×