Advertisements
Advertisements
प्रश्न
Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (f + g) (x), (f − g) (x), (fg) (x) and \[\left( \frac{f}{g} \right) \left( x \right)\] .
उत्तर
Given:
f (x) = x2 and g (x) = 2x + 1
Clearly, D (f) = R and D (g) = R
\[\therefore D\left( f \pm g \right) = D\left( f \right) \cap D\left( g \right) = R \cap R = R\]
\[D\left( fg \right) = D\left( f \right) \cap D\left( g \right) = R \cap R = R\]
\[D\left( \frac{f}{g} \right) = D\left( f \right) \cap D\left( g \right) - \left\{ x: g\left( x \right) = 0 \right\} = R \cap R - \left\{ - \frac{1}{2} \right\} = R - \left\{ - \frac{1}{2} \right\}\]
Thus,
(f + g) (x) : R → R is given by (f + g) (x) = f (x) + g (x) = x2 + 2x + 1= (x + 1)2 .
(f - g) (x) : R → R is given by (f- g) (x) = f (x) - g (x) = x2 - 2x -1.
(fg) (x) : R → R is given by (fg) (x) = f(x).g(x) = x2(2x + 1) = 2x3 + x2 .
\[\left( \frac{f}{g} \right): R - \left\{ - \frac{1}{2} \right\} \to \text{ R is given by } \left( \frac{f}{g} \right)\left( x \right) = \frac{f\left( x \right)}{g\left( x \right)} = \frac{x^2}{2x + 1}\] .
APPEARS IN
संबंधित प्रश्न
f, g, h are three function defined from R to R as follow:
(iii) h(x) = x2 + 1
Find the range of function.
If f(x) = (x − a)2 (x − b)2, find f(a + b).
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(v) \[\frac{g}{f}\]
If f(x) = loge (1 − x) and g(x) = [x], then determine function:
(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),
Write the range of the function f(x) = ex−[x], x ∈ R.
If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]
Write the domain and range of function f(x) given by
Write the domain and range of \[f\left( x \right) = \sqrt{x - \left[ x \right]}\] .
Which of the following are functions?
If A = {1, 2, 3} and B = {x, y}, then the number of functions that can be defined from A into B is
If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is
If \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) =
If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\] x ∈ R, then
The domain of the function
The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is
Check if the following relation is function:
Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.
{(1, 1), (2, 1), (3, 1), (4, 1)}
Check if the relation given by the equation represents y as function of x:
2y + 10 = 0
If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`
Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one
Express the following exponential equation in logarithmic form
54° = 1
Express the following exponential equation in logarithmic form
231 = 23
Express the following exponential equation in logarithmic form
`9^(3/2)` = 27
Express the following logarithmic equation in exponential form
log2 64 = 6
Write the following expression as sum or difference of logarithm
In `(("a"^3 ("a" - 2)^2)/sqrt("b"^2 + 5))`
Select the correct answer from given alternative.
The domain and range of f(x) = 2 − |x − 5| is
Answer the following:
Simplify `log_10 28/45 - log_10 35/324 + log_10 325/432 - log_10 13/15`
Answer the following:
Find the domain of the following function.
f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`
Let f = {(x, y) | x, y ∈ N and y = 2x} be a relation on N. Find the domain, co-domain and range. Is this relation a function?
A graph representing the function f(x) is given in it is clear that f(9) = 2
Describe the following Range
A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`
A function f is defined by f(x) = 2x – 3 find x such that f(x) = x
A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour
The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.
Length ‘x’ of forehand (in cm) |
Height 'y' (in inches) |
35 | 56 |
45 | 65 |
50 | 69.5 |
55 | 74 |
Find the length of forehand of a person if the height is 53.3 inches
A function f is defined by f(x) = 2x – 3 find x such that f(x) = f(1 – x)
The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`
Calculate the value of `"gg" (1/2)`
The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.
Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3
If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`
The range of the function f(x) = `""^(7 - x)P_(x - 3)` is ______.