हिंदी

If F ( X ) = X − 1 X + 1 , Then Show that (I) F ( 1 X ) = − F ( X ) (Ii) F ( − 1 X ) = − 1 F ( X ) - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]

उत्तर

Given:

\[f\left( x \right) = \frac{x - 1}{x + 1}\]       .....(1) 
(i) Replacing  by
 
\[\frac{1}{x}\]  in (1), we get
 

\[f\left( \frac{1}{x} \right) = \frac{\frac{1}{x} - 1}{\frac{1}{x} + 1}\]

\[ = \frac{1 - x}{1 + x}\]

\[ = - \frac{x - 1}{x + 1}\]

\[ = - f\left( x \right)\]

(ii) Replacing  by

\[- \frac{1}{x}\]  in (1), we get

\[f\left( - \frac{1}{x} \right) = \frac{- \frac{1}{x} - 1}{- \frac{1}{x} + 1}\]

\[ = \frac{- 1 - x}{- 1 + x}\]

\[ = - \frac{x + 1}{x - 1}\]

\[ = - \frac{1}{\left( \frac{x - 1}{x + 1} \right)}\]

\[ = - \frac{1}{f\left( x \right)}\]

 
 
 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.2 | Q 9 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(b) {x : f(x) = −2}


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

Write the domain and range of  \[f\left( x \right) = \sqrt{x - \left[ x \right]}\] .

 

Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

Check if the following relation is function:


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Write the following expression as sum or difference of logarithm

`log (sqrt(x) root(3)(y))`


Prove that logbm a = `1/"m" log_"b""a"`


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

Find x, if x = 33log32  


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

Show that, logy x3 . logz y4 . logx z5 = 60


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


Let f : R → R be defined by 

f(x) = `{(3x;    x > 2),(2x^2;    1 ≤ x ≤ 2), (4x;   x < 1):}`

Then f(-2) + f(1) + f(3) is ______ 


Find the range of the following functions given by `sqrt(16 - x^2)`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The range of the function y = `1/(2 - sin3x)` is ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


The range of the function f(x) = x2 + 2x+ 2 is ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×