हिंदी

Let F and G Be Two Functions Given by F = {(2, 4), (5, 6), (8, −1), (10, −3)} and G = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}. Find the Domain of F + G - Mathematics

Advertisements
Advertisements

प्रश्न

Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g

उत्तर

It is given that f and g are two functions such that

f = {(2, 4), (5, 6), (8, −1), (10, −3)}

and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}

Now,

Domain of f = Df = {2, 5, 8, 10}

Domain of g = Dg = {2, 7, 8, 10, 11}

∴ Domain of f + g = Df ∩ Dg = {2, 8, 10}

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.5 | Q 16 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Define a function as a correspondence between two sets.

 

fgh are three function defined from R to R as follow:

(i) f(x) = x2

Find the range of function.

 

If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 


If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

Which of the following are functions?


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Check if the following relation is a function.


Check if the relation given by the equation represents y as function of x:

2x + 3y = 12


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Express the area A of circle as a function of its diameter d


lf f(x) = 3(4x+1), find f(– 3)


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

If f(x) = log(1 – x), 0 ≤ x < 1 show that `"f"(1/(1 + x))` = f(1 – x) – f(– x)


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0


If the domain of function f(a) = a2 - 4a + 8 is (-∞, ∞), then the range of function is ______


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Find the domain of the following functions given by f(x) = x|x|


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×