English

If F ( X ) = 2 X + 2 − X 2 , Then F(X + Y) F(X − Y) is Equal to (A) 1 2 [ F ( 2 X ) + F ( 2 Y ) ](B) 1 2 [ F ( 2 X ) − F ( 2 Y ) ](C) 1 4 [ F ( 2 X ) + F ( 2 Y ) ] - Mathematics

Advertisements
Advertisements

Question

If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 

Options

  • (a) \[\frac{1}{2}\left[ f\left( 2x \right) + f\left( 2y \right) \right]\]

     

  • (b)  \[\frac{1}{2}\left[ f\left( 2x \right) - f\left( 2y \right) \right]\]

     

  • (c)  \[\frac{1}{4}\left[ f\left( 2x \right) + f\left( 2y \right) \right]\]

     

  • (d) \[\frac{1}{4}\left[ f\left( 2x \right) - f\left( 2y \right) \right]\]

     

MCQ

Solution

(a) \[\frac{1}{2}\left[ f\left( 2x \right) + f\left( 2y \right) \right]\]

Given: \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] Now,
f(x + yf(x − y) = \[\left( \frac{2^{x + y} + 2^{- x - y}}{2} \right)\left( \frac{2^{x - y} + 2^{- x + y}}{2} \right)\]

⇒ f(x + yf(x − y) = \[\frac{1}{4}\left( 2^{2x} + 2^{- 2y} + 2^{2y} + 2^{- 2x} \right)\] ⇒ f(x + yf(x − y) = \[\frac{1}{2}\left( \frac{2^{2x} + 2^{- 2x}}{2} + \frac{2^{2y} + 2^{- 2y}}{2} \right)\]

⇒ f(x + yf(x − y) = \[\frac{1}{2}\left[ f\left( 2x \right) + f\left( 2y \right) \right]\]
 
 
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 13 | Page 43

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(a) range of f, i.e. f(A).


\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.


If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to


The range of f(x) = cos [x], for π/2 < x < π/2 is


Which of the following are functions?


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


Check if the relation given by the equation represents y as function of x:

x + y2 = 9


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


If f(m) = m2 − 3m + 1, find f(0)


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Express the following logarithmic equation in exponential form

ln 1 = 0


Express the following logarithmic equation in exponential form

ln e = 1


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

Find x, if x = 33log32  


The domain of the function f(x) = `sqrtx` is ______.


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Find the domain of the following functions given by f(x) = x|x|


Find the range of the following functions given by f(x) = |x − 3|


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f – g)(x)


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×