English

F, G, H Are Three Function Defined from R to R as Follow:(Ii) G(X) = Sin Xfind the Range of Function. - Mathematics

Advertisements
Advertisements

Question

fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.

Solution

(ii) Given:
g(x) = sin x 
Range of g(x) = {y ∈ R : - 1 ≤ y ≤ 1}

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.1 [Page 8]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.1 | Q 10.2 | Page 8

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


If f(x) = 3x + a and f(1) = 7 find a and f(4).


Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find f(− x)


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


lf f(x) = 3(4x+1), find f(– 3)


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Express the following logarithmic equation in exponential form

`log_(1/2) (8)` = – 3


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

If f(x) = 3x4 – 5x2 + 7 find f(x – 1)


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

Find the domain of the following function.

f(x) = 5–xPx–1


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


Given the function f: x → x2 – 5x + 6, evaluate f(– 1)


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

 Calculate the value of `"gg" (1/2)`


The domain of the function f(x) = `sqrtx` is ______.


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.


The range of the function f(x) = `""^(7 - x)P_(x - 3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×