English

Lf f(x) = 3(4x+1), find f(– 3) - Mathematics and Statistics

Advertisements
Advertisements

Question

lf f(x) = 3(4x+1), find f(– 3)

Sum

Solution

f(x) = 3(4x+1

∴ f(– 3) = 3(4–3+1)

= `3/(4^(-2))`

= `3/16`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Functions - Exercise 6.1 [Page 119]

RELATED QUESTIONS

Define a function as a correspondence between two sets.

 

\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 


If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


Check if the following relation is function:


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Express the area A of circle as a function of its diameter d


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Express the following logarithmic equation in exponential form

log2 64 = 6


Find the domain of f(x) = ln (x − 5)


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

Find x, if x = 33log32  


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


A graph representing the function f(x) is given in it is clear that f(9) = 2

For what value of x is f(x) = 1?


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour


If f(x) = 5x - 3, then f-1(x) is ______ 


Mapping f: R → R which is defined as f(x) = sin x, x ∈ R will be ______ 


Domain of function f(x) = cos–1 6x is ______.


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)


If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.


If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×