Advertisements
Advertisements
Question
Answer the following:
Find x, if x = 33log32
Solution
x = 33log32 = (3log32)3
= (2)3 ...[∵ alogax = x]
= 8.
APPEARS IN
RELATED QUESTIONS
Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.
- {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
- {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
- {(1, 3), (1, 5), (2, 5)}
Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine
(c) whether f(xy) = f(x) : f(y) holds
f, g, h are three function defined from R to R as follow:
(i) f(x) = x2
Find the range of function.
The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]
The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]
Show that f is a function and g is not a function.
If \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that
If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that
(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]
(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(i) f + g
If f(x) = 4x − x2, x ∈ R, then write the value of f(a + 1) −f(a − 1).
Check if the following relation is function:
Which of the following relations are functions? If it is a function determine its domain and range:
{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}
Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.
{(1, 2), (2, −1), (3, 1), (4, 3)}
If f(m) = m2 − 3m + 1, find f(x + 1)
If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b
Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?
Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one
Show that if f : A → B and g : B → C are onto, then g ° f is also onto
Express the following logarithmic equation in exponential form
`log_5 1/25` = – 2
Find the domain of f(x) = log10 (x2 − 5x + 6)
Write the following expression as sum or difference of logarithm
`log ("pq"/"rs")`
Solve for x.
log2 + log(x + 3) – log(3x – 5) = log3
Solve for x.
x + log10 (1 + 2x) = x log10 5 + log10 6
If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)
Select the correct answer from given alternatives.
If log10(log10(log10x)) = 0 then x =
Answer the following:
Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1
Answer the following:
If f(x) = 3x + a and f(1) = 7 find a and f(4)
Answer the following:
If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy
Answer the following:
Without using log tables, prove that `2/5 < log_10 3 < 1/2`
Answer the following:
Find the range of the following function.
f(x) = `1/(1 + sqrt(x))`
Given the function f: x → x2 – 5x + 6, evaluate f(2)
A graph representing the function f(x) is given in it is clear that f(9) = 2
What is the image of 6 under f?
A function f is defined by f(x) = 2x – 3 find x such that f(x) = f(1 – x)
If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.
Domain of function f(x) = cos–1 6x is ______.
Find the domain of the following function.
f(x) = [x] + x
Find the domain and range of the function f(x) = `1/sqrt(x - 5)`
Let f(x) = `sqrt(1 + x^2)`, then ______.
If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.
Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.
The range of the function f(x) = `""^(7 - x)P_(x - 3)` is ______.