English

If f(m) = m2 − 3m + 1, find f(x + 1) - Mathematics and Statistics

Advertisements
Advertisements

Question

If f(m) = m2 − 3m + 1, find f(x + 1)

Sum

Solution

f(m) = m2 – 3m + 1

f(x + 1) = (x + 1)2 – 3(x + 1) + 1

= x2 + 2x + 1 − 3x − 3 + 1

= x2 − x − 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Functions - Exercise 6.1 [Page 118]

RELATED QUESTIONS

If f(x) = x2, find `(f(1.1) - f(1))/((1.1 - 1))`


Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(b) {x : f(x) = −2}


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


Write the domain and range of  \[f\left( x \right) = \sqrt{x - \left[ x \right]}\] .

 

Let f(x) = |x − 1|. Then,


If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

Check if the following relation is function:


If f(m) = m2 − 3m + 1, find f(− x)


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following exponential equation in logarithmic form

e2 = 7.3890


Express the following logarithmic equation in exponential form

ln 1 = 0


Write the following expression as sum or difference of logarithm

`log (sqrt(x) root(3)(y))`


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


Answer the following:

If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Mapping f: R → R which is defined as f(x) = sin x, x ∈ R will be ______ 


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×