English

If F : [−2, 2] → R is Defined by F ( X ) = { − 1 , for − 2 ≤ X ≤ 0 X − 1 , for 0 ≤ X ≤ 2 , Then {X ∈ [−2, 2] : X ≤ 0 and F (|X|) = X} =(A) {−1} (B) {0} (C) { − 1 2 }(D) ϕ - Mathematics

Advertisements
Advertisements

Question

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

Options

  • (a) {−1}

  • (b) {0}

  • (c) \[\left\{ - \frac{1}{2} \right\}\]

  • (d) ϕ

     
MCQ

Solution

(c) \[\left\{ - \frac{1}{2} \right\}\] 

Given:

\[f\left( x \right) = \begin{cases}- 1, &  \text { for } - 2 \leq x \leq 0 \\ x - 1, &\text{  for }  0 \leq x \leq 2\end{cases}\]We know,  \[\left| x \right| \geq 0\]

⇒  \[f\left( \left| x \right| \right) = \left| x \right| - 1\]      ...(1)
Also,
If  \[x \leq 0\] , then \[\left| x \right| = - x\]    ...(2)
 
∴ {x ∈ [−2, 2]: x ≤ 0 and f (|x|) = x
=\[\left\{ x: \left| x \right| - 1 = x \right\} [\text{ Using } (1)]\]
=\[\left\{ x: - x - 1 = x \right\} [\text{ Using }  (2)]\]
\[\left\{ x: 2x = \frac{- 1}{2} \right\}\]
 =\[\left\{ x: x = \frac{- 1}{2} \right\}\]
=\[\left\{ \frac{- 1}{2} \right\}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 24 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

What is the fundamental difference between a relation and a function? Is every relation a function?


If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

Write the range of the function f(x) = ex[x]x ∈ R.

 

Which of the following are functions?


If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find f(−3)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Express the following exponential equation in logarithmic form

231 = 23


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

If b2 = ac. prove that, log a + log c = 2 log b


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Answer the following:

If `log"a"/(x + y - 2z) = log"b"/(y + z - 2x) = log"c"/(z + x - 2y)`, show that abc = 1


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = `x/(x + 1)`, g(x) = `x/(1 - x)`


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0


An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal square from the corner and turning up the side as shown. Express the volume V of the box as a function of x


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


The domain of the function f(x) = `sqrtx` is ______.


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×