English

If F ( X ) = ⎧ ⎪ ⎨ ⎪ ⎩ X 2 , When X < 0 X , When 0 ≤ X < 1 1 X , When X ≥ 1 Find: (A) F(1/2), (B) F(−2), (C) F(1), (D) F ( √ 3 ) and (E) F ( √ − 3 ) - Mathematics

Advertisements
Advertisements

Question

If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

Solution

Given:

\[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\] 

Now,
(a) \[f\left( \frac{1}{2} \right) = \frac{1}{2}\]         [ Using f (x) = x, 0 ≤ x < 1]

(b) f ( -2) = ( - 2)2 = 4  

(c) \[f\left( 1 \right) = \frac{1}{1} = 1\]
(d) \[f\left( \sqrt{3} \right) = \frac{1}{\sqrt{3}}\]
(e)  \[f\left( \sqrt{- 3} \right)\] Since x is not defined in R,
\[f\left( \sqrt{- 3} \right)\]  does not exist.
 
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.2 [Page 11]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.2 | Q 6 | Page 11

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.


Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

Write the range of the function f(x) = ex[x]x ∈ R.

 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


Let f(x) = |x − 1|. Then,


If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


Find the domain and range of the following function.

f(x) = `root(3)(x + 1)`


Express the area A of a square as a function of its side s


Express the area A of circle as a function of its radius r


Express the area A of circle as a function of its diameter d


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following exponential equation in logarithmic form

10−2 = 0.01


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The range of the function y = `1/(2 - sin3x)` is ______.


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×