English

Check the injectivity and surjectivity of the following function. f : R → R given by f(x) = x3 - Mathematics and Statistics

Advertisements
Advertisements

Question

Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 

Sum

Solution

f : R → R given by f(x) = x3 

Let x13 = x23

∴ x13 – x23 = 0

∴ `(x_1 - x_2) underbrace((x_1^2 + x_1 x_2 + x_2^2))_(> 0  "for all"  "x"_1,  "x"_2  "as it's discriminant" < 0)` = 0

∴ x1 = x2

∴ f is injective.

Let y = x3

∴ x = `y^(1/3)`

∴ For every y ∈ R, there is some x ∈ R

∴ f is surjective.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Functions - Exercise 6.1 [Page 119]

RELATED QUESTIONS

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(b) {x : f(x) = −2}


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (g) (x), (f − g) (x), (fg) (x) and  \[\left( \frac{f}{g} \right) \left( x \right)\] .

 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Which one of the following is not a function?


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Express the area A of a square as a function of its side s


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Express the following exponential equation in logarithmic form

25 = 32


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


The equation logx2 16 + log2x 64 = 3 has,


Select the correct answer from given alternatives.

If f : R → R is defined by f(x) = x3 then f–1 (8) is equal to :


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Check if this relation is a function


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the length of forehand of a person if the height is 53.3 inches


Find the domain of the following function.

f(x) = `x/(x^2 + 3x + 2)`


Find the domain of the following functions given by f(x) = x|x|


Find the range of the following functions given by f(x) = |x − 3|


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×