Advertisements
Advertisements
Question
Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`
Solution
g(x) = 0
∴ `(5x - 6)/7` = 0
∴ 5x – 6 = 0
∴ x = `6/5`.
APPEARS IN
RELATED QUESTIONS
Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine
(b) {x : f(x) = −2}
If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).
If f(x) = loge (1 − x) and g(x) = [x], then determine function:
(ii) fg
Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (f + g) (x), (f − g) (x), (fg) (x) and \[\left( \frac{f}{g} \right) \left( x \right)\] .
If f, g, h are real functions given by f(x) = x2, g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .
Let f(x) = |x − 1|. Then,
If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\] x ∈ R, then
The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is
The domain of definition of \[f\left( x \right) = \sqrt{4x - x^2}\] is
If ƒ(m) = m2 − 3m + 1, find f(x + 1)
If f(x) = 3x + a and f(1) = 7 find a and f(4).
If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.
Check if the relation given by the equation represents y as function of x:
2x + 3y = 12
If f(m) = m2 − 3m + 1, find f(0)
Find the domain and range of the following function.
f(x) = `sqrt((x - 3)/(7 - x))`
Find the domain and range of the following function.
f(x) = `sqrt(16 - x^2)`
Check the injectivity and surjectivity of the following function.
f : R → R given by f(x) = x3
Show that if f : A → B and g : B → C are onto, then g ° f is also onto
Write the following expression as a single logarithm.
ln (x + 2) + ln (x − 2) − 3 ln (x + 5)
If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)
Select the correct answer from given alternatives.
If f : R → R is defined by f(x) = x3 then f–1 (8) is equal to :
Select the correct answer from given alternatives.
Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.
Answer the following:
If f(x) = 3x4 – 5x2 + 7 find f(x – 1)
Answer the following:
If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b
Answer the following:
If b2 = ac. prove that, log a + log c = 2 log b
Answer the following:
Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`
Answer the following:
Find the domain of the following function.
f(x) = 5–xPx–1
Find the domain of the following function.
f(x) = `sqrtlog(x^2 - 6x + 6)`
A graph representing the function f(x) is given in it is clear that f(9) = 2
For what value of x is f(x) = 1?
A graph representing the function f(x) is given in it is clear that f(9) = 2
Describe the following Range
A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour
The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.
Length ‘x’ of forehand (in cm) |
Height 'y' (in inches) |
35 | 56 |
45 | 65 |
50 | 69.5 |
55 | 74 |
Find the length of forehand of a person if the height is 53.3 inches
Find the domain of the following function.
f(x) = `x/(x^2 + 3x + 2)`
Find the range of the following functions given by `sqrt(16 - x^2)`
Find the range of the following functions given by f(x) = 1 – |x – 2|
Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)
Find the domain and range of the function f(x) = `1/sqrt(x - 5)`
Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If f(g(x)) = 8x2 – 2x, and g(f(x)) = 4x2 + 6x + 1, then the value of f(2) + g(2) is ______.
The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.