English

If F : R → R and G : R → R Are Defined by F(X) = 2x + 3 and G(X) = X2 + 7, Then the Values of X Such that G(F(X)) = 8 Are (A) 1, 2 (B) −1, 2 (C) −1, −2 (D) 1, −2(A) 1, 2 (B) −1, 2 (C) −1, −2 (D) 1, −2 - Mathematics

Advertisements
Advertisements

Question

If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are

Options

  • (a) 1, 2

  • (b) −1, 2

  • (c) −1, −2

  • (d) 1, −2

     
MCQ

Solution

(c) −1, −2
f(x) = 2x + 3 and g(x) = x2 + 7

\[g(f(x)) = 8\]

\[ \Rightarrow \left( f(x) \right)^2 + 7 = 8\]

\[ \Rightarrow (2x + 3 )^2 + 7 = 8\]

\[ \Rightarrow x^2 + 3x + 2 = 0\]

\[ \Rightarrow (x + 2)(x + 1) = 0\]

\[ \Rightarrow x = - 1, - 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 23 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


Write the domain and range of  \[f\left( x \right) = \sqrt{x - \left[ x \right]}\] .

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Express the area A of circle as a function of its circumference C.


Express the following exponential equation in logarithmic form

e2 = 7.3890


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Select the correct answer from given alternatives.

Find x, if 2log2 x = 4


Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


The domain of the function f(x) = `sqrtx` is ______.


The domain of the real valued function f(x) = `sqrt((x - 2)/(3 - x))` is ______.


Mapping f: R → R which is defined as f(x) = sin x, x ∈ R will be ______ 


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


The range of the function f(x) = `""^(7 - x)P_(x - 3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×