English

If F(X) = Loge (1 − X) And G(X) = [X], Then Determine Function:(Iii) \[\Frac{F}{G}\] - Mathematics

Advertisements
Advertisements

Question

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

Solution

Given:
f(x) = loge (1 − x) and g(x) = [x]
Clearly, f(x) = loge (1 − x)  is defined for all ( 1 -x)  > 0.
⇒ 1 > x
⇒ x < 1
⇒ x ∈ ( -∞, 1)
Thus, domain () = ( - ∞, 1)

Again,
g(x) = [x] is defined for all x ∈ R.
Thus, domain (g) = R
∴ Domain (f) ∩ Domain (g) = ( - ∞, 1) ∩ R      = ( -∞, 1)

Hence,

(iii) Given:
  g(x) = [ x ]

  If  [ ]  = 0,
 x ∈ (0, 1)
Thus,

\[\text{ domain } \left( \frac{f}{g} \right) = \text{ domain } \left( f \right) \cap \text{ domain } \left( g \right) - \left\{ x: g\left( x \right) = 0 \right\}\]
\[\frac{f}{g}: \left( - \infty , 0 \right) \to \text{ R is defined by } \left( \frac{f}{g} \right)\left( x \right) = \frac{f\left( x \right)}{g\left( x \right)} = \frac{\log_e \left( 1 - x \right)}{\left[ x \right]} . \]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.4 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.4 | Q 5.3 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


fgh are three function defined from R to R as follow:

(i) f(x) = x2

Find the range of function.

 

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(b) f2 = {(1, 1), (2, 7), (3, 5)}


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

Write the range of the real function f(x) = |x|.

 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B? 

 


The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


If f(m) = m2 − 3m + 1, find `f(1/2)`


A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


Check if the following relation is a function.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Express the area A of a square as a function of its side s


Express the area A of circle as a function of its radius r


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Express the following exponential equation in logarithmic form

25 = 32


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Answer the following:

Simplify, log (log x4) – log (log x)


Answer the following:

If f(x) = log(1 – x), 0 ≤ x < 1 show that `"f"(1/(1 + x))` = f(1 – x) – f(– x)


Answer the following:

Show that `7log (15/16) + 6log(8/3) + 5log (2/5) + log(32/25)` = log 3


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Given the function f: x → x2 – 5x + 6, evaluate f(– 1)


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The domain of the function f(x) = `sqrtx` is ______.


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Find the range of the following functions given by f(x) = 1 – |x – 2| 


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×