English

Let a = {1, 2, 3} and B = {2, 3, 4}. Then Which of the Following is a Function from a to B? (A) {(1, 2), (1, 3), (2, 3), (3, 3)} (B) [(1, 3), (2, 4)] (C) {(1, 3), (2, 2), (3, 3)} - Mathematics

Advertisements
Advertisements

Question

Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B? 

 

Options

  • (a) {(1, 2), (1, 3), (2, 3), (3, 3)}

  • (b) [(1, 3), (2, 4)]

  • (c) {(1, 3), (2, 2), (3, 3)}

  • (d) {(1, 2), (2, 3), (3, 2), (3, 4)}

     
MCQ

Solution

(c) {(1, 3), (2, 2), (3, 3)}
We have
R = {(1, 3), (2, 2), (3, 3)}
We observe that each element of the given set has appeared as first component in one and only one ordered pair of R.
So, R = {(1, 3), (2, 2), (3, 3)} is a function.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 1 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If f(x) = x2, find `(f(1.1) - f(1))/((1.1 - 1))`


Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


Express the area A of circle as a function of its circumference C.


An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following exponential equation in logarithmic form

e–x = 6


Find the domain of f(x) = log10 (x2 − 5x + 6)


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Select the correct answer from given alternatives

The domain of `1/([x] - x)` where [x] is greatest integer function is


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:

Show that, `log ("a"^2/"bc") + log ("b"^2/"ca") + log ("c"^2/"ab")` = 0


Answer the following:

If b2 = ac. prove that, log a + log c = 2 log b


Answer the following:

Show that `7log (15/16) + 6log(8/3) + 5log (2/5) + log(32/25)` = log 3


Answer the following:

Show that, logy x3 . logz y4 . logx z5 = 60


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


Let f : R → R be defined by 

f(x) = `{(3x;    x > 2),(2x^2;    1 ≤ x ≤ 2), (4x;   x < 1):}`

Then f(-2) + f(1) + f(3) is ______ 


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


Find the range of the following functions given by f(x) = 1 – |x – 2| 


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×