English

F ( X ) = ⎧ ⎨ ⎩ 3 X − 2 , X < 0 ; 1 , X = 0 ; 4 X + 1 , X > 0 . Find: F(1), F(−1), F(0) and F(2). - Mathematics

Advertisements
Advertisements

Question

\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 

Solution

(1) = 4 × 1 + 1 = 5          [By using f (x) = 4x + 1, x > 0]
f ( -1) = 3 × (-1) -2          [By using (x) = 3x -2, x < 0]
        = -3-2=-5f (0) = 1             [By using f (x) = 1, x = 0]
f (2) = 4 × 2 + 1                 [By using f (x) = 4x + 1, x > 0]
        = 9
Hence,
(1) = 5, f (- 1) = -5, f (0) = 1 and f (2) = 9. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.1 | Q 5 | Page 7

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


Which of the following are functions?


If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


If f(x) = sin [π2x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then


The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Check if the following relation is a function.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


Check if the relation given by the equation represents y as function of x:

2x + 3y = 12


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Express the area A of circle as a function of its radius r


Express the area A of circle as a function of its diameter d


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Express the following exponential equation in logarithmic form

25 = 32


Write the following expression as sum or difference of logarithm

`log (sqrt(x) root(3)(y))`


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


Prove that logbm a = `1/"m" log_"b""a"`


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Answer the following:

If `log"a"/(x + y - 2z) = log"b"/(y + z - 2x) = log"c"/(z + x - 2y)`, show that abc = 1


Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×