English

If F(X) = Cos (Log X), Then the Value of F(X2) F(Y2) −1 2 { F ( X 2 Y 2 ) + F ( X 2 Y 2 ) } Is(A) −2 (B) −1 (C) 1/2 (D) None of These - Mathematics

Advertisements
Advertisements

Question

If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

Options

  • (a) −2

  • (b) −1

  • (c) 1/2

  • (d) None of these

     
MCQ

Solution

(d) None of these

Given: \[f\left( x \right) = \cos\left( \log x \right)\]

\[\Rightarrow f\left( x^2 \right) = \cos\left( \log\left( x^2 \right) \right)\]
\[ \Rightarrow f\left( x^2 \right) = \cos\left( 2\log\left( x \right) \right)\]

Similarly,

\[f\left( y^2 \right) = \cos\left( 2\log\left( y \right) \right)\]
Now,
 
\[f\left( \frac{x^2}{y^2} \right) = \cos\left( \log\left( \frac{x^2}{y^2} \right) \right) = \cos\left( \log x^2 - \log y^2 \right)\]and
\[f\left( x^2 y^2 \right) = \cos\left( \log x^2 y^2 \right) = \cos\left( \log x^2 + \log y^2 \right)\]
\[\Rightarrow f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) = \cos\left( \left( 2\log x - 2\log y \right) \right) + \cos\left( \left( 2\log x + 2\log y \right) \right)\]
\[ \Rightarrow f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) = 2\cos\left( 2\log x \right)\cos\left( 2\log y \right)\]
\[ \Rightarrow \frac{1}{2}\left[ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right] = \cos\left( 2\log x \right)\cos\left( 2\log y \right)\]
\[\Rightarrow f\left( x^2 \right)f\left( y^2 \right) - \frac{1}{2}\left\{ f\left( x^2 y^2 \right) + f\left( \frac{x^2}{y^2} \right) \right\} = \cos\left( 2\log x \right)\cos\left( 2\log y \right) - \cos\left( 2\log x \right)\cos\left( 2\log y \right) = 0\]
 
 
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.6 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.6 | Q 4 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

What is the fundamental difference between a relation and a function? Is every relation a function?


Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B? 

 


Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\]  x ∈ R, then

 

The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find `f(1/2)`


If f(m) = m2 − 3m + 1, find f(− x)


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


Check if the following relation is a function.


Check if the relation given by the equation represents y as function of x:

2x + 3y = 12


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


Prove that logbm a = `1/"m" log_"b""a"`


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the length of forehand of a person if the height is 53.3 inches


Let A = {1, 2, 3, 4} and B = N. Let f : A → B be defined by f(x) = x3 then, find the range of f


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


The domain of the real valued function f(x) = `sqrt((x - 2)/(3 - x))` is ______.


Find the range of the following functions given by `sqrt(16 - x^2)`


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×