English

If f, g and h are real functions defined by f ( x ) = √ x + 1 , g ( x ) = 1 x and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0). - Mathematics

Advertisements
Advertisements

Question

If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Solution

Given:

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\text{ and } h\left( x \right) = 2 x^3 - 3\]
Clearly, f (x) is defined for x + 1 ≥ 0 .
⇒ x ≥-1
⇒ x ∈ [-1, ∞]
Thus, domain ( f ) = [-1, ∞] .
Clearly, g (x) is defined for x ≠ 0 .
⇒ x ∈ R – { 0} and h(x) is defined for all x such that  x ∈ R .
Thus,
domain ( ) ∩ domain (g) ∩ domain (h) = [ -1, ∞] – { 0}.
Hence,
(2f + g – h) : [ -1, ∞] – { 0} → R is given by:
(2f + g – h)(x) = 2f (x) + g (x) -h (x)
\[= 2\sqrt{x + 1} + \frac{1}{x} - 2 x^2 + 3\]
\[(2f + g - h)(1) = 2\sqrt{2} + 1 - 2 + 3 = 2\sqrt{2} + 4 - 2 = 2\sqrt{2} + 2\]

(2f + g – h) (0) does not exist because 0  does not lie in the domain x ∈[ - 1, ∞] – {0}.

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Functions - Exercise 3.4 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 3 Functions
Exercise 3.4 | Q 6 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Define a function as a correspondence between two sets.

 

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(b) f2 = {(1, 1), (2, 7), (3, 5)}


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Express the following exponential equation in logarithmic form

e2 = 7.3890


Solve for x.

log2 x + log4 x + log16 x = `21/4`


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Select the correct answer from given alternatives.

If f : R → R is defined by f(x) = x3 then f–1 (8) is equal to :


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Answer the following:

If `log"a"/(x + y - 2z) = log"b"/(y + z - 2x) = log"c"/(z + x - 2y)`, show that abc = 1


Answer the following:

Show that, logy x3 . logz y4 . logx z5 = 60


Answer the following:

Find the domain of the following function.

f(x) = 5–xPx–1


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


Find the range of the following functions given by `|x - 4|/(x - 4)`


Find the range of the following functions given by `sqrt(16 - x^2)`


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Which of the following functions is NOT one-one?


The period of the function

f(x) = `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×