हिंदी

Domain of a2-x2 (a>0) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.

विकल्प

  • (– a, a)

  • [– a, a]

  • [0, a]

  • (– a, 0]

MCQ
रिक्त स्थान भरें

उत्तर

Domain of `sqrt(a^2 - x^2)  (a > 0)` is [– a, a].

Explanation:

Let f(x) = `sqrt(a^2 - x^2)`

f(x) is defined if a2 – x2 ≥ 0

⇒ x2 – a2 ≤ 0

⇒ x2 ≤ a2

⇒ x ≤ ± a

⇒ – a ≤ x ≤ a

∴ Domain of f(x) = [– a, a]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Relations and Functions - Exercise [पृष्ठ ३१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 2 Relations and Functions
Exercise | Q 28 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


Find the domain and range of the following function.

f(x) = `root(3)(x + 1)`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Answer the following:

If f(x) = 3x4 – 5x2 + 7 find f(x – 1)


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Solve : `sqrt(log_2 x^4) + 4log_4 sqrt(2/x)` = 2


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the length of forehand of a person if the height is 53.3 inches


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Which of the following functions is NOT one-one?


Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×