मराठी

Write the Domain and Range of Function F(X) Given by F ( X ) = 1 √ X − | X | . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

उत्तर

Given:

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] We know that \[\left| x \right| = \begin{cases}x, & if x \geq 0 \\ - x, & if x < 0\end{cases}\] \[\Rightarrow x - \left| x \right| = \begin{cases}x - x = 0, & if x \geq 0 \\ x + x = 2x, & if x < 0\end{cases}\]
⇒ x - | x| ≤ 0 for all x.
\[\Rightarrow \frac{1}{\sqrt{x - \left| x \right|}}\] does not take any real values for any x ∈ R.
⇒ f (x) is not defined for any x ∈ R.

Hence,
domain ( f ) = Φ and range ( ) = Φ 

 


 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.5 | Q 12 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


fgh are three function defined from R to R as follow:

(i) f(x) = x2

Find the range of function.

 

et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

Which of the following are functions?


f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find f(0)


Express the area A of circle as a function of its circumference C.


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Express the following exponential equation in logarithmic form

25 = 32


Express the following exponential equation in logarithmic form

231 = 23


Express the following logarithmic equation in exponential form

log2 64 = 6


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


If `log(( x - y)/4) = logsqrt(x) + log sqrt(y)`, show that (x + y)2 = 20xy 


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Answer the following:

A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 5


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Answer the following:
If log3 [log2 (log3x)] = 1, show that x = 6561

Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×