मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Select the correct answer from given alternatives. If f(x) =11-x, then f{f[f(x)]} is - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is

पर्याय

  • x – 1

  • 1 – x

  • x

  • – x

MCQ

उत्तर

x

Explanation;

f[f(x)] = `"f"(1/(1 - x))`

= `1/(1 - 1/(1 - x))`

= `1/(((1 - x) - 1)/(1 - x))`

= `(x - 1)/x`

∴ f{f[f(x)]} = `"f"((x - 1)/x)`

= `1/(1 - (x - 1)/x)`

= `1/((x - (x - 1))/x`

= x

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Miscellaneous Exercise 6.1 [पृष्ठ १२९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 6 Functions
Miscellaneous Exercise 6.1 | Q I. (5) | पृष्ठ १२९

संबंधित प्रश्‍न

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(a) the image set of the domain of f


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (g) (x), (f − g) (x), (fg) (x) and  \[\left( \frac{f}{g} \right) \left( x \right)\] .

 

If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

The domain of definition of the function f(x) = log |x| is


A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


If f(m) = m2 − 3m + 1, find f(− x)


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Express the area A of a square as a function of its side s


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Express the following exponential equation in logarithmic form

e2 = 7.3890


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Express the following logarithmic equation in exponential form

ln e = 1


Select the correct answer from given alternatives.

Find x, if 2log2 x = 4


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

Find the domain of the following function.

f(x) = 5–xPx–1


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


A graph representing the function f(x) is given in it is clear that f(9) = 2

For what value of x is f(x) = 1?


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


The domain of the real valued function f(x) = `sqrt((x - 2)/(3 - x))` is ______.


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f – g)(x)


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


Let f(x) = `sqrt(1 + x^2)`, then ______.


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×