मराठी

The Domain of Definition of the Function F ( X ) = √ X − 1 + √ 3 − X is (A) [1, ∞) (B) (−∞, 3) (C) (1, 3) (D) [1, 3] - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

पर्याय

  • (a) [1, ∞)

  • (b) (−∞, 3)

  • (c) (1, 3)

  • (d) [1, 3]

     
MCQ

उत्तर

(d) [1, 3]

\[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\]

\[\text{ For f(x) to be defined, } \]

\[\left( x - 1 \right) \geq 0\]

\[ \Rightarrow x \geq 1 . . . (1)\]

\[\text{ and  } \left( 3 - x \right) \geq 0\]

\[ \Rightarrow 3 \leq x . . . (2)\]

\[\text{ From (1) and (2), } \]

\[x \in [1, 3]\]

 

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 34 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f(x) = (x − a)2 (x − b)2, find f(a + b).

 

If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B? 

 


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


If f(m) = m2 − 3m + 1, find f(−3)


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Express the area A of circle as a function of its radius r


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Write the following expression as sum or difference of logarithm

`log ("pq"/"rs")`


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Select the correct answer from given alternatives

If f(x) = 2x2 + bx + c and f(0) = 3 and f(2) = 1, then f(1) is equal to


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Answer the following:
If log3 [log2 (log3x)] = 1, show that x = 6561

Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


Given the function f: x → x2 – 5x + 6, evaluate f(2)


An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal square from the corner and turning up the side as shown. Express the volume V of the box as a function of x


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


Find the range of the following functions given by f(x) = 1 – |x – 2| 


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×