English

Answer the following: Find whether the following function is one-one f : R → R defined by f(x) = x2 + 5 - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5

Sum

Solution

f : R → R defined by f(x) = x2 + 5

∵ f(– x) = f(x) = x2 + 5

∴ f is not one-one (i.e. many-one) function.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Functions - Miscellaneous Exercise 6.2 [Page 130]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 6 Functions
Miscellaneous Exercise 6.2 | Q II. (2) (i) | Page 130

RELATED QUESTIONS

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


If f(m) = m2 − 3m + 1, find f(− x)


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Express the following exponential equation in logarithmic form

e2 = 7.3890


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Select the correct answer from given alternatives.

If f : R → R is defined by f(x) = x3 then f–1 (8) is equal to :


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

Find x, if x = 33log32  


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Solve : `sqrt(log_2 x^4) + 4log_4 sqrt(2/x)` = 2


Answer the following:

Find the range of the following function.

f(x) = [x] – x


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


Let A = {1, 2, 3, 4} and B = N. Let f : A → B be defined by f(x) = x3 then, find the range of f


Find the domain of the following function.

f(x) = `x/(x^2 + 3x + 2)`


Let A and B be any two sets such that n(B) = p, n(A) = q then the total number of functions f : A → B is equal to ______.


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


Find the range of the following functions given by f(x) = |x − 3|


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×