हिंदी

The domain of the function f defined by f(x) = 1x-|x| is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.

विकल्प

  • R

  • R

  • R– 

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

none of these

Explanation:

Given that f(x) = `1/sqrt(x - |x|)`

Where `x - |x| = {{:(x - x = 0, "if"  x ≥ 0),(2x,  "if"  x < 0):}`

Thus `1/sqrt(x - |x|)` is not defined for any x ∈ R.

Hence f is not defined for any x ∈ R.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Relations and Functions - Solved Examples [पृष्ठ २६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 2 Relations and Functions
Solved Examples | Q 11 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

What is the fundamental difference between a relation and a function? Is every relation a function?


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


Check if the following relation is a function.


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


If f(m) = m2 − 3m + 1, find f(− x)


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Express the area A of circle as a function of its circumference C.


An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain


Express the following exponential equation in logarithmic form

e–x = 6


Express the following logarithmic equation in exponential form

ln e = 1


If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Select the correct answer from given alternatives

If f(x) = 2x2 + bx + c and f(0) = 3 and f(2) = 1, then f(1) is equal to


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

If f(x) = 3x + a and f(1) = 7 find a and f(4)


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Find the range of the following functions given by `|x - 4|/(x - 4)`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


The range of the function f(x) = x2 + 2x+ 2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×