हिंदी

If F(X) = Loge (1 − X) And G(X) = [X], Then Determine Function:(Ii) Fg - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg

उत्तर

Given:
f(x) = loge (1 − x) and g(x) = [x]
Clearly, f(x) = loge (1 − x)  is defined for all ( 1 -x)  > 0.
⇒ 1 > x
⇒ x < 1
⇒ x ∈ ( -∞, 1)
Thus, domain () = ( - ∞, 1)

Again,
g(x) = [x] is defined for all x ∈ R.
Thus, domain (g) = R
∴ Domain (f) ∩ Domain (g) = ( - ∞, 1) ∩ R      = ( -∞, 1)

Hence,

(ii) (fg) : ( - ∞, 1) → R is given by (fg) (x) = f(x).g(x) = loge (1 − x)[ x ] = [ x ]loge (1 − x).

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.4 | Q 5.2 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

Which of the following are functions?


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\]  x ∈ R, then

 

The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Express the following logarithmic equation in exponential form

log2 64 = 6


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Write the following expression as sum or difference of logarithm

`log (sqrt(x) root(3)(y))`


If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

If b2 = ac. prove that, log a + log c = 2 log b


Answer the following:

If f(x) = log(1 – x), 0 ≤ x < 1 show that `"f"(1/(1 + x))` = f(1 – x) – f(– x)


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


Answer the following:

Find the domain of the following function.

f(x) = x!


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


If the domain of function f(a) = a2 - 4a + 8 is (-∞, ∞), then the range of function is ______


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.


The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.


Which of the following functions is NOT one-one?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×